4,402 research outputs found

    The 32-GHz performance of the DSS-14 70-meter antenna: 1989 configuration

    Get PDF
    The results of preliminary 32 GHz calibrations of the 70 meter antenna at Goldstone are presented. Measurements were done between March and July 1989 using Virgo A and Venus as the primary efficiency calibrators. The flux densites of theses radio sources at 32 GHz are not known with high accuracy, but were extrapolated from calibrated data at lower frequencies. The measured value of efficiency (0.35) agreed closely with the predicted value (0.32), and the results are very repeatable. Flux densities of secondary sources used in the observations were subsequently derived. These measurements were performed using a beamswitching radiometer that employed an uncooled high-electron mobility transistor (HEMT) low-noise amplifier. This system was installed primarily to determine the performance of the antenna in its 1989 configuration, but the experience will also aid in successful future calibration of the Deep Space Network (DSN) at this frequency

    On the observability of bow shocks of Galactic runaway OB stars

    Full text link
    Massive stars that have been ejected from their parent cluster and supersonically sailing away through the interstellar medium (ISM) are classified as exiled. They generate circumstellar bow shock nebulae that can be observed. We present two-dimensional, axisymmetric hydrodynamical simulations of a representative sample of stellar wind bow shocks from Galactic OB stars in an ambient medium of densities ranging from n_ISM=0.01 up to 10.0/cm3. Independently of their location in the Galaxy, we confirm that the infrared is the most appropriated waveband to search for bow shocks from massive stars. Their spectral energy distribution is the convenient tool to analyze them since their emission does not depend on the temporary effects which could affect unstable, thin-shelled bow shocks. Our numerical models of Galactic bow shocks generated by high-mass (~40 Mo) runaway stars yield Hα\alpha fluxes which could be observed by facilities such as the SuperCOSMOS H-Alpha Survey. The brightest bow shock nebulae are produced in the denser regions of the ISM. We predict that bow shocks in the field observed at Ha by means of Rayleigh-sensitive facilities are formed around stars of initial mass larger than about 20 Mo. Our models of bow shocks from OB stars have the emission maximum in the wavelength range 3 <= lambda <= 50 micrometer which can be up to several orders of magnitude brighter than the runaway stars themselves, particularly for stars of initial mass larger than 20 Mo.Comment: 13 pages, 12 figures. Accepted to MNRAS (2016

    183 GHz water line variation: An energetic outburst in orion KL

    Get PDF
    Observations of the 3(13)-2(20) transition of water vapor in the direction of Ori MC1 in 1980 February show a 50% flux increase and an apparent additional red shift of approximately 2 km/s relative to the line observed in 1977 December. From a detailed examination of the amplitude and frequency calibration, it appears unlikely that the effect is due to systematic error. The increase is attributed to the appearance of a new component at a velocity of 12 km/s with respect to the local standard of rest. The new component also has broad wings. Increased emission from a region in the high-velocity core of Ori MC1 can be due either to additional far-IR radiation to pump the 1983 GHz transition or to a change in the physical conditions in the gas. Statistical equilibrium calculations using the large-velocity-gradient formalism were carried out to develop a model for the emission. The calculations support a model in which the gas in the region of enhanced emission is hotter than the dust. The temporal coincidence between the 183 GHZ increase and the 22 GH1 water maser outburst suggests a common, impulsive cause, which has heated the gas in a part of the HV source, enhancing the emission in both transitions

    Low frequency VLBI in space using GAS-Can satellites: Report on the May 1987 JPL Workshop

    Get PDF
    Summarized are the results of a workshop held at JPL on May 28 and 29, 1987, to study the feasibility of using small, very inexpensive spacecraft for a low-frequency radio interferometer array. Many technical aspects of a mission to produce high angular resolution images of the entire sky at frequencies from 2 to 20 MHz were discussed. The workshop conclusion was that such a mission was scientifically valuable and technically practical. A useful array could be based on six or more satellites no larger than those launched from Get-Away-Special canisters. The cost of each satellite could be $1-2M, and the mass less than 90 kg. Many details require further study, but as this report shows, there is good reason to proceed. No fundamental problems have been discovered involving the use of untraditional, very inexpensive spacecraft for this type of mission

    The transitional millisecond pulsar IGR J18245-2452 during its 2013 outburst at X-rays and soft gamma-rays

    Get PDF
    IGR~J18245--2452/PSR J1824--2452I is one of the rare transitional accreting millisecond X-ray pulsars, showing direct evidence of switches between states of rotation powered radio pulsations and accretion powered X-ray pulsations, dubbed transitional pulsars. IGR~J18245--2452 is the only transitional pulsar so far to have shown a full accretion episode, reaching an X-ray luminosity of 1037\sim10^{37}~erg~s1^{-1} permitting its discovery with INTEGRAL in 2013. In this paper, we report on a detailed analysis of the data collected with the IBIS/ISGRI and the two JEM-X monitors on-board INTEGRAL at the time of the 2013 outburst. We make use of some complementary data obtained with the instruments on-board XMM-Newton and Swift in order to perform the averaged broad-band spectral analysis of the source in the energy range 0.4 -- 250~keV. We have found that this spectrum is the hardest among the accreting millisecond X-ray pulsars. We improved the ephemeris, now valid across its full outburst, and report the detection of pulsed emission up to 60\sim60 keV in both the ISGRI (10.9σ10.9 \sigma) and Fermi/GBM (5.9σ5.9 \sigma) bandpass. The alignment of the ISGRI and Fermi GBM 20 -- 60 keV pulse profiles are consistent at a $\sim25\ \mu$s level. We compared the pulse profiles obtained at soft X-rays with \xmm\ with the soft \gr-ray ones, and derived the pulsed fractions of the fundamental and first harmonic, as well as the time lag of the fundamental harmonic, up to 150 μ150\ \mus, as a function of energy. We report on a thermonuclear X-ray burst detected with \Integ, and using the properties of the previously type-I X-ray burst, we show that all these events are powered primarily by helium ignited at a depth of yign2.7×108y_{\rm ign} \approx 2.7\times10^8 g cm2{}^{-2}. For such a helium burst the estimated recurrence time of Δtrec5.6\Delta t_{\rm rec}\approx5.6 d is in agreement with the observations.Comment: 10 pages, 6 Figures, 3 Tables Astronomy and Astrophysics Journal, accepted for publication on the 13th of April 201

    Accreting millisecond X-ray pulsars: 10 years of INTEGRAL observations

    Full text link
    During the last 10 years, INTEGRAL made a unique contribution to the study of accreting millisecond X-ray pulsars (AMXPs), discovering three of the 14 sources now known of this class. Besides increasing the number of known AMXPs, INTEGRAL also carried out observations of these objects above 20 keV, substantially advancing our understanding of their behaviour. We present here a review of all the AMXPs observed with INTEGRAL and discuss the physical interpretation of their behaviour in the X-ray domain. We focus in particular on the lightcurve profile during outburst, as well as the timing, spectral, and thermonuclear type-I X-ray bursts properties.Comment: 8 pages, 8 figures. Proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" the 9th INTEGRAL Workshop, October 15-19, 2012, Paris, Franc

    Omineca Herald, July, 10, 1914

    Get PDF
    Patients admitted to an intensive care unit after cardiac arrest often suffer from severe brain injury. This injury worsens further after restoration of circulation due to the cascade of reactions in the brain. Neuroprotective therapies aim to diminish this secondary brain injury, thereby targeting at a better outcome. Several new large international studies will start soon, next to two smaller national phase II studies. In this paper we describe the new studies and invite Dutch intensive care units to join

    The Short Rotation Period of Nereid

    Full text link
    We determine the period, p = 11.52 \pm 0.14 h, and a light curve peak-to-peak amplitude, a = 0.029 \pm 0.003 magnitudes, of the Neptunian irregular satellite Nereid. If the light curve variation is due to albedo variations across the surface, rather than solely to the shape of Nereid variations, the rotation period would be a factor of two shorter. In either case, such a rotation period and light curve amplitude, together with Nereid's orbital period, p=360.14 days, imply that Nereid is almost certainly in a regular rotation state, rather than the chaotic rotation state suggested by Schaefer and Schaefer (1988,2000) and Dobrovolskis (1995). Assuming that Nereid is perfectly spherical, the albedo variation is 3% across the observed surface. Assuming a uniform geometric albedo, the observed cross sectional area varies by 3%. We caution that the lightcurve found in this paper only sets limits on the combination of albedo and physical irregularity and that we cannot determine the orientation of Nereid's spin axis from our data.Comment: Accepted by ApJ Letters, 11 pages (incl. 1 figure

    FUSE Spectra of the Black Hole Binary LMC X-3

    Full text link
    Far-ultraviolet spectra of LMC X-3 were taken covering photometric phases 0.47 to 0.74 in the 1.7-day orbital period of the black-hole binary (phase zero being superior conjunction of the X-ray source). The continuum is faint and flat, but appears to vary significantly during the observations. Concurrent RXTE/ASM observations show the system was in its most luminous X-ray state during the FUSE observations. The FUV spectrum contains strong terrestrial airglow emission lines, while the only stellar lines clearly present are emissions from the O VI resonance doublet. Their flux does not change significantly during the FUSE observations. These lines are modelled as two asymmetrical profiles, including the local ISM absorptions due to C II and possibly O VI. Velocity variations of O VI emission are consistent with the orbital velocity of the black hole and provide a new constraint on its mass.Comment: 12 pages including 1 table, 4 diagrams To appear in A
    corecore