31 research outputs found

    Notes on the existence of solutions in the pairwise comparisons method using the Heuristic Rating Estimation approach

    Full text link
    Pairwise comparisons are a well-known method for modelling of the subjective preferences of a decision maker. A popular implementation of the method is based on solving an eigenvalue problem for M - the matrix of pairwise comparisons. This does not take into account the actual values of preference. The Heuristic Rating Estimation (HRE) approach is a modification of this method in which allows modelling of the reference values. To determine the relative order of preferences is to solve a certain linear equation system defined by the matrix A and the constant term vector b (both derived from M). The article explores the properties of these equation systems. In particular, it is proven that for some small data inconsistency the A matrix is an M-matrix, hence the equation proposed by the HRE approach has a unique strictly positive solution.Comment: 8 page

    On the geometric mean method for incomplete pairwise comparisons

    Full text link
    When creating the ranking based on the pairwise comparisons very often, we face difficulties in completing all the results of direct comparisons. In this case, the solution is to use the ranking method based on the incomplete PC matrix. The article presents the extension of the well known geometric mean method for incomplete PC matrices. The description of the methods is accompanied by theoretical considerations showing the existence of the solution and the optimality of the proposed approach.Comment: 15 page

    Heuristic Rating Estimation Method for the incomplete pairwise comparisons matrices

    Full text link
    The Heuristic Rating Estimation Method enables decision-makers to decide based on existing ranking data and expert comparisons. In this approach, the ranking values of selected alternatives are known in advance, while these values have to be calculated for the remaining ones. Their calculation can be performed using either an additive or a multiplicative method. Both methods assumed that the pairwise comparison sets involved in the computation were complete. In this paper, we show how these algorithms can be extended so that the experts do not need to compare all alternatives pairwise. Thanks to the shortening of the work of experts, the presented, improved methods will reduce the costs of the decision-making procedure and facilitate and shorten the stage of collecting decision-making data.Comment: 13 page
    corecore