47 research outputs found
Phosphorus-based compounds for EUV multilayer optics materials
We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were considered for applications as reflector materials. Our calculations for multilayer structures with perfect interfaces show that the Pd/BP material combination suggests the highest reflectivity values, exceeding 70% within the 9.2 – 10.0 nm spectral range. We also discuss the potential of fabrication of BP-based multilayer structures for optical applications in the extreme ultraviolet rang
Surface and sub-surface oxidation of thin films using Low Energy Ion Scattering
Ru and ZrN are candidate capping layers for applications such as catalysis, electronics and optical coatings: Ru exhibits a low resistivity, high thermal stability, excellent oxidation resistance and good diffusion capabilities. ZrN is thermally stable, and is known for its good mechanical properties. Although the oxidation process has been studied for both materials, the surface and especially the sub-surface oxidation is not properly understood and well addressed. We use the sub-monolayer surface sensitivity of the low energy ion scattering (LEIS) technique for in-situ monitoring of surface oxidation and determination of the oxygen sticking probabilities. From the LEIS in-depth signal, sub-nanometer sub-surface oxidation can be determined as a function of time and from these data oxygen diffusion constants can be extracted. These data support the applications for which adequate protecting surface films are required.
i) Author to whom correspondence should be addressed. Electronic mail: [email protected]
Surface and sub-surface thermal oxidation of thin ruthenium films
A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide fil
Combined EUV reflectance and X-ray reflectivity data analysis of periodic multilayer structures
We present a way to analyze the chemical composition of periodical multilayer structures using the simultaneous analysis of grazing incidence hard X-Ray reflectivity (GIXR) and normal incidence extreme ultraviolet reflectance (EUVR). This allows to combine the high sensitivity of GIXR data to layer and interface thicknesses with the sensitivity of EUVR to the layer densities and atomic compositions. This method was applied to the reconstruction of the layered structure of a LaN/B multilayer mirror with 3.5 nm periodicity. We have compared profiles obtained by simultaneous EUVR and GIXR and GIXR-only data analysis, both reconstructed profiles result in a similar description of the layered structure. However, the simultaneous analysis of both EUVR and GIXR by a single algorithm lead to a ∼2x increased accuracy of the reconstructed layered model, or a more narrow range of solutions, as compared to the GIXR analysis only. It also explains the inherent difficulty of accurately predicting EUV reflectivity from a GIXR-only analysis
Mo/Si multilayer-coated amplitude division beam splitters for XUV radiation sources
Amplitude-division beam splitters for XUV radiation sources have been developed and extensively characterized. Mo/Si multilayer coatings were deposited on 50 nm-thick SiN membranes. By changing the multilayer structure (periodicity, number of bilayers, etc.) the intensity of the reflected and transmitted beams were optimized for selected incident radiation parameters (wavelength, incident angle). The developed optical elements were characterized by means of XUV reflectometry and transmission measurements, atomic force microscopy and optical interferometry. Special attention was paid to the spatial homogeneity of the optical response and reflected beam wavefront distortions. Here the results of the characterization are presented and improvements required for advanced applications at XUV free-electron lasers are identified. A flatness as low as 4 nm r.m.s. on 3 × 3 mm beam splitters and 22 nm r.m.s. on 10 × 10 mm beam splitters has been obtained. The high-spatial-frequency surface roughness was about 0.7-1 nm r.m.s. The middle-spatial-frequency roughness was in the range 0.2-0.8 nm r.m.s. The reflection and transmission of the beam splitters were found to be very homogeneous, with a deviation of less than 2% across the full optical element
Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers
In antiferromagnetically coupled superlattices grown on (001) faces of cubic
substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or
Fe/Cr, the magnetic states evolve under competing influence of bilinear and
biquadratic exchange interactions, surface-enhanced four-fold in-plane
anisotropy, and specific finite-size effects. Using phenomenological
(micromagnetic) theory, a comprehensive survey of the magnetic states and
reorientation transitions has been carried out for multilayer systems with even
number of ferromagnetic sub-layers and magnetizations in the plane. In
two-layer systems (N=2) the phase diagrams in dependence on components of the
applied field in the plane include ``swallow-tail'' type regions of
(metastable) multistate co-existence and a number of continuous and
discontinuous reorientation transitions induced by radial and transversal
components of the applied field. In multilayers (N \ge 4) noncollinear states
are spatially inhomogeneous with magnetization varying across the multilayer
stack. For weak four-fold anisotropy the magnetic states under influence of an
applied field evolve by a complex continuous reorientation into the saturated
state. At higher anisotropy they transform into various inhomogeneous and
asymmetric structures. The discontinuous transitions between the magnetic
states in these two-layers and multilayers are characterized by broad ranges of
multi-phase coexistence of the (metastable) states and give rise to specific
transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio