94 research outputs found
The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats
<p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting.</p> <p>The purpose of this study was to delineate the effect of human mesenchymal stem cell (hMSCs) transplantation on the restoration of neurogenic bladder and impaired hindlimb function after spinal cord contusion of rats and the relationship between neurotrophic factors such as brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and bladder and hindlimb functions.</p> <p>Results</p> <p>Modified moderate contusion injury were performed on the thoracic spinal cord of Sprague-Dawley rats using MASCIS impactor and hMSCs, human fibroblasts or phosphate-buffered saline were transplanted into injured spinal cord 9 days after injury for hMSC and two control groups respectively. Ladder test showed more rapid restoration of hindlimb function in hMSC group than in control group, but Basso, Beattie, and Bresnahan score and coupling score were not different significantly among hMSC and two control groups. Neurogenic bladder was not improved in either group. ED1 positive macrophages were significantly reduced in hMSC group than in two control groups, but ELISA and RT-PCR studies revealed BDNF and NT-3 levels in spinal cord and bladder were not different among hMSC and two control groups regardless the experimental duration.</p> <p>Conclusion</p> <p>hMSC transplantation was effective in reducing inflammatory reaction after spinal cord contusion of rats but not sufficient to recover locomotor and bladder dysfunction. BDNF and NT-3 levels in the spinal cord and bladder were not increased 28 and 56 days after hMSC transplantation.</p
Generation of the first BAC-based physical map of the common carp genome
<p>Abstract</p> <p>Background</p> <p>Common carp (<it>Cyprinus carpio</it>), a member of Cyprinidae, is the third most important aquaculture species in the world with an annual global production of 3.4 million metric tons, accounting for nearly 14% of the all freshwater aquaculture production in the world. Apparently genomic resources are needed for this species in order to study its performance and production traits. In spite of much progress, no physical maps have been available for common carp. The objective of this project was to generate a BAC-based physical map using fluorescent restriction fingerprinting.</p> <p>Result</p> <p>The first generation of common carp physical map was constructed using four- color High Information Content Fingerprinting (HICF). A total of 72,158 BAC clones were analyzed that generated 67,493 valid fingerprints (5.5 Ă genome coverage). These BAC clones were assembled into 3,696 contigs with the average length of 476 kb and a N50 length of 688 kb, representing approximately 1.76 Gb of the common carp genome. The largest contig contained 171 BAC clones with the physical length of 3.12 Mb. There are 761 contigs longer than the N50, and these contigs should be the most useful resource for future integrations with linkage map and whole genome sequence assembly. The common carp physical map is available at <url>http://genomics.cafs.ac.cn/fpc/WebAGCoL/Carp/WebFPC/</url>.</p> <p>Conclusion</p> <p>The reported common carp physical map is the first physical map of the common carp genome. It should be a valuable genome resource facilitating whole genome sequence assembly and characterization of position-based genes important for aquaculture traits.</p
Search for invisible modes of nucleon decay in water with the SNO+ detector
This paper reports results from a search for nucleon decay through invisible modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently deexcite, often emitting detectable gamma rays. A search for such gamma rays yields limits of 2.5Ă1029âây at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and 3.6Ă1029âây for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of 1.3Ă1028âây for nn, 2.6Ă1028âây for pn and 4.7Ă1028âây for pp, an improvement over existing limits by close to 3 orders of magnitude for the latter two
Measurement of the 8B solar neutrino flux in SNO+ with very low backgrounds
A measurement of the 8B solar neutrino flux has been made using a 69.2 kt-day dataset acquired with the SNO+ detector during its water commissioning phase. At energies above 6 MeV the dataset is an extremely pure sample of solar neutrino elastic scattering events, owing primarily to the detectorâs deep location, allowing an accurate measurement with relatively little exposure. In that energy region the best fit background rate is 0.25+0.09â0.07ââevents/ktâday, significantly lower than the measured solar neutrino event rate in that energy range, which is 1.03+0.13â0.12ââevents/ktâday. Also using data below this threshold, down to 5 MeV, fits of the solar neutrino event direction yielded an observed flux of 2.53+0.31â0.28(stat)+0.13â0.10(syst)Ă106ââcmâ2âsâ1, assuming no neutrino oscillations. This rate is consistent with matter enhanced neutrino oscillations and measurements from other experiments
Measurement of neutron-proton capture in the SNO+ water phase
The SNO+ experiment collected data as a low-threshold water Cherenkov
detector from September 2017 to July 2019. Measurements of the 2.2-MeV
produced by neutron capture on hydrogen have been made using an Am-Be
calibration source, for which a large fraction of emitted neutrons are produced
simultaneously with a 4.4-MeV . Analysis of the delayed coincidence
between the 4.4-MeV and the 2.2-MeV capture revealed a
neutron detection efficiency that is centered around 50% and varies at the
level of 1% across the inner region of the detector, which to our knowledge is
the highest efficiency achieved among pure water Cherenkov detectors. In
addition, the neutron capture time constant was measured and converted to a
thermal neutron-proton capture cross section of mb
Observation of Antineutrinos from Distant Reactors using Pure Water at SNO+
The SNO+ collaboration reports the first observation of reactor antineutrinos
in a Cherenkov detector. The nearest nuclear reactors are located 240 km away
in Ontario, Canada. This analysis used events with energies lower than in any
previous analysis with a large water Cherenkov detector. Two analytical methods
were used to distinguish reactor antineutrinos from background events in 190
days of data and yielded consistent observations of antineutrinos with a
combined significance of 3.5 .Comment: v2: add missing author, add link to supplemental materia
A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE
This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model
Snowmass Neutrino Frontier: DUNE Physics Summary
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter
Snowmass Neutrino Frontier: DUNE Physics Summary
The Deep Underground Neutrino Experiment (DUNE) is a next-generation
long-baseline neutrino oscillation experiment with a primary physics goal of
observing neutrino and antineutrino oscillation patterns to precisely measure
the parameters governing long-baseline neutrino oscillation in a single
experiment, and to test the three-flavor paradigm. DUNE's design has been
developed by a large, international collaboration of scientists and engineers
to have unique capability to measure neutrino oscillation as a function of
energy in a broadband beam, to resolve degeneracy among oscillation parameters,
and to control systematic uncertainty using the exquisite imaging capability of
massive LArTPC far detector modules and an argon-based near detector. DUNE's
neutrino oscillation measurements will unambiguously resolve the neutrino mass
ordering and provide the sensitivity to discover CP violation in neutrinos for
a wide range of possible values of . DUNE is also uniquely
sensitive to electron neutrinos from a galactic supernova burst, and to a broad
range of physics beyond the Standard Model (BSM), including nucleon decays.
DUNE is anticipated to begin collecting physics data with Phase I, an initial
experiment configuration consisting of two far detector modules and a minimal
suite of near detector components, with a 1.2 MW proton beam. To realize its
extensive, world-leading physics potential requires the full scope of DUNE be
completed in Phase II. The three Phase II upgrades are all necessary to achieve
DUNE's physics goals: (1) addition of far detector modules three and four for a
total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power
from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary
muon spectrometer with a magnetized, high-pressure gaseous argon TPC and
calorimeter.Comment: Contribution to Snowmass 202
- âŠ