974 research outputs found

    Property-Driven Fence Insertion using Reorder Bounded Model Checking

    Full text link
    Modern architectures provide weaker memory consistency guarantees than sequential consistency. These weaker guarantees allow programs to exhibit behaviours where the program statements appear to have executed out of program order. Fortunately, modern architectures provide memory barriers (fences) to enforce the program order between a pair of statements if needed. Due to the intricate semantics of weak memory models, the placement of fences is challenging even for experienced programmers. Too few fences lead to bugs whereas overuse of fences results in performance degradation. This motivates automated placement of fences. Tools that restore sequential consistency in the program may insert more fences than necessary for the program to be correct. Therefore, we propose a property-driven technique that introduces "reorder-bounded exploration" to identify the smallest number of program locations for fence placement. We implemented our technique on top of CBMC; however, in principle, our technique is generic enough to be used with any model checker. Our experimental results show that our technique is faster and solves more instances of relevant benchmarks as compared to earlier approaches.Comment: 18 pages, 3 figures, 4 algorithms. Version change reason : new set of results and publication ready version of FM 201

    Chaining Test Cases for Reactive System Testing (extended version)

    Full text link
    Testing of synchronous reactive systems is challenging because long input sequences are often needed to drive them into a state at which a desired feature can be tested. This is particularly problematic in on-target testing, where a system is tested in its real-life application environment and the time required for resetting is high. This paper presents an approach to discovering a test case chain---a single software execution that covers a group of test goals and minimises overall test execution time. Our technique targets the scenario in which test goals for the requirements are given as safety properties. We give conditions for the existence and minimality of a single test case chain and minimise the number of test chains if a single test chain is infeasible. We report experimental results with a prototype tool for C code generated from Simulink models and compare it to state-of-the-art test suite generators.Comment: extended version of paper published at ICTSS'1

    Certified Reinforcement Learning with Logic Guidance

    Full text link
    This paper proposes the first model-free Reinforcement Learning (RL) framework to synthesise policies for unknown, and continuous-state Markov Decision Processes (MDPs), such that a given linear temporal property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), namely a finite-state machine expressing the property. Exploiting the structure of the LDBA, we shape a synchronous reward function on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces that probabilistically satisfy the linear temporal property. This probability (certificate) is also calculated in parallel with policy learning when the state space of the MDP is finite: as such, the RL algorithm produces a policy that is certified with respect to the property. Under the assumption of finite state space, theoretical guarantees are provided on the convergence of the RL algorithm to an optimal policy, maximising the above probability. We also show that our method produces ''best available'' control policies when the logical property cannot be satisfied. In the general case of a continuous state space, we propose a neural network architecture for RL and we empirically show that the algorithm finds satisfying policies, if there exist such policies. The performance of the proposed framework is evaluated via a set of numerical examples and benchmarks, where we observe an improvement of one order of magnitude in the number of iterations required for the policy synthesis, compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782

    Lost in Abstraction: Monotonicity in Multi-Threaded Programs (Extended Technical Report)

    Full text link
    Monotonicity in concurrent systems stipulates that, in any global state, extant system actions remain executable when new processes are added to the state. This concept is not only natural and common in multi-threaded software, but also useful: if every thread's memory is finite, monotonicity often guarantees the decidability of safety property verification even when the number of running threads is unknown. In this paper, we show that the act of obtaining finite-data thread abstractions for model checking can be at odds with monotonicity: Predicate-abstracting certain widely used monotone software results in non-monotone multi-threaded Boolean programs - the monotonicity is lost in the abstraction. As a result, well-established sound and complete safety checking algorithms become inapplicable; in fact, safety checking turns out to be undecidable for the obtained class of unbounded-thread Boolean programs. We demonstrate how the abstract programs can be modified into monotone ones, without affecting safety properties of the non-monotone abstraction. This significantly improves earlier approaches of enforcing monotonicity via overapproximations

    Using Program Synthesis for Program Analysis

    Get PDF
    In this paper, we identify a fragment of second-order logic with restricted quantification that is expressive enough to capture numerous static analysis problems (e.g. safety proving, bug finding, termination and non-termination proving, superoptimisation). We call this fragment the {\it synthesis fragment}. Satisfiability of a formula in the synthesis fragment is decidable over finite domains; specifically the decision problem is NEXPTIME-complete. If a formula in this fragment is satisfiable, a solution consists of a satisfying assignment from the second order variables to \emph{functions over finite domains}. To concretely find these solutions, we synthesise \emph{programs} that compute the functions. Our program synthesis algorithm is complete for finite state programs, i.e. every \emph{function} over finite domains is computed by some \emph{program} that we can synthesise. We can therefore use our synthesiser as a decision procedure for the synthesis fragment of second-order logic, which in turn allows us to use it as a powerful backend for many program analysis tasks. To show the tractability of our approach, we evaluate the program synthesiser on several static analysis problems.Comment: 19 pages, to appear in LPAR 2015. arXiv admin note: text overlap with arXiv:1409.492

    Partial Orders for Efficient BMC of Concurrent Software

    Get PDF
    This version previously deposited at arXiv:1301.1629v1 [cs.LO]The vast number of interleavings that a concurrent program can have is typically identified as the root cause of the difficulty of automatic analysis of concurrent software. Weak memory is generally believed to make this problem even harder. We address both issues by modelling programs' executions with partial orders rather than the interleaving semantics (SC). We implemented a software analysis tool based on these ideas. It scales to programs of sufficient size to achieve first-time formal verification of non-trivial concurrent systems code over a wide range of models, including SC, Intel x86 and IBM Power
    • …
    corecore