19 research outputs found

    Cavity Enhancement of Single Quantum Dot Emission in the Blue

    Get PDF
    Cavity-enhanced single-photon emission in the blue spectral region was measured from single InGaN/GaN quantum dots. The low-Q microcavities used were characterized using micro-reflectance spectroscopy where the source was the enhanced blue output from a photonic crystal fibre. Micro-photoluminescence was observed from several cavities and found to be ~10 times stronger than typical InGaN quantum dot emission without a cavity. The measurements were performed using non-linear excitation spectroscopy in order to suppress the background emission from the underlying wetting layer

    Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography

    Get PDF
    Highly uniform InGaN-based quantum dots (QDs) grown on a nanopatterned dielectric layer defined by self-assembled diblock copolymer were performed by metal-organic chemical vapor deposition. The cylindrical-shaped nanopatterns were created on SiNx layers deposited on a GaN template, which provided the nanopatterning for the epitaxy of ultra-high density QD with uniform size and distribution. Scanning electron microscopy and atomic force microscopy measurements were conducted to investigate the QDs morphology. The InGaN/GaN QDs with density up to 8 × 1010 cm-2 are realized, which represents ultra-high dot density for highly uniform and well-controlled, nitride-based QDs, with QD diameter of approximately 22-25 nm. The photoluminescence (PL) studies indicated the importance of NH3 annealing and GaN spacer layer growth for improving the PL intensity of the SiNx-treated GaN surface, to achieve high optical-quality QDs applicable for photonics devices

    High-power, high repetition rate, short-pulse mode-locking using flared waveguide quantum-dot lasers at 1.3 /spl mu/m

    No full text
    Ultra-short pulse, high power mode-locking is demonstrated in InGaAs quantum dot lasers using a flared waveguide design. 24GHz mode-locking with 790fs wide pulses and 500mW peak powers suitable for telecommunications applications are presented
    corecore