20 research outputs found
Effect of Cesium and Phosphate Addition to Mo/V/W Mixed Oxide Catalysts for the Gas Phase Oxidation of Methacrolein to Methacrylic Acid
The present study investigates modified Mo/V/W mixed oxides as a possible alternative for state of the art heteropoly acid catalysts (HPA) in the partial oxidation of methacrolein (MAC) to methacrylic acid (MAA). Even though HPAs show an excellent activity and MAA selectivity, their long-term stability is unsatisfying, rendering the catalyst inoperable after runtimes of roughly 6 months. Mo/V/W mixed oxides consisting of M1 and a hexagonal (Mo,V,W)O-phase (h-phase) in varying proportions were modified by impregnation with aqueous solutions containing cesium and phosphate ions. All samples were characterized with respect to specific surface area, crystallinity, elemental and phase composition. The catalytic performance in the oxidation of MAC to MAA was investigated using a continuously operated reaction unit with tubular fixed bed reactor. Impregnation with cesium and phosphate ions and subsequent heating triggers the transformation of the mixed oxide into a Keggin-type HPA, whereby the h-phase is more reactive than M1. The transformation into HPA is accompanied by a change in the catalytic properties, i.e., the selectivity to MAA is considerably improved. Compared to HPA synthesized directly, however, the HPA samples obtained by transformation of mixed oxides exhibit no advantages, be it with respect to activity, MAA selectivity or stability
Numerical investigation of interfacial mass transfer in two phase flows using the VOF method
A mass transfer model is developed using the volume-of-fluid (VOF) method with a piecewise linear interface calculation (PLIC) scheme in ANSYS FLUENT for a free-rising bubble. The mass flow rate is defined via the interface by Fick\u27s law and added into the species equation as a source term in the liquid phase using the user-defined functions (UDFs) in ANSYS FLUENT. The interfacial concentration field for the mass flow rate is discretized by two numerical methods. One of them is based on the calculation of the discretization length between the centroid of the liquid volume and the interface using the liquid void fraction and interface normal vectors at the interface cells, while in the second method the discretization length is approximated using only the liquid void fraction at the interface cells. The influence of mesh size, schemes, and different Schmidt numbers on the mass transfer mechanism is numerically investigated for a free-rising bubble. Comparison of the developed mass transfer model with the theoretical results shows reasonable and consistent results with a smaller time-step size and with cell size