122 research outputs found

    Collagen Biomarkers for Arthritis Applications

    Get PDF
    The most common form of chronic arthritis is osteoarthritis (OA) with prevalence as high as 80% after age 75 (Arden and Nevitt, 2006). The incidence of OA is expected to increase as the population ages, increasing the socioeconomic burden of OA. Despite the signifi cant burden of this disease, no drug has been identifi ed that can effectively modify disease progression (Moskowitz and Hooper, 2005; Abadie et al. 2004). However, slowing disease progress and improvement in quality of life may be achieved by behavioral modifi cations, such as weight loss and exercise. Many patients with early OA will progress to disability and joint replacement. Physical examination and radiographic studies are relatively poor means for detecting disease early or predicting progression. Therefore, identifi cation of factors to facilitate early OA diagnosis and prognosis is a major focus of current OA research (Lohmander and Felson, 2004; Lohmander, 2004; Garnero and Delmas, 2003)

    Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254)

    Get PDF
    INTRODUCTION: Acute trauma involving the anterior cruciate ligament is believed to be a major risk factor for the development of post-traumatic osteoarthritis 10 to 20 years post-injury. In this study, to better understand the early biological changes which occur after acute injury, we investigated synovial fluid and serum biomarkers. METHODS: We collected serum from 11 patients without pre-existing osteoarthritis from a pilot intervention trial (5 placebo and 6 drug treated) using an intra-articular interleukin-1 receptor antagonist (IL-1Ra) therapy, 9 of which also supplied matched synovial fluid samples at presentation to the clinic after acute knee injury (mean 15.2 ± 7.2 days) and at the follow-up visit for reconstructive surgery (mean 47.6 ± 12.4 days). To exclude patients with pre-existing osteoarthritis (OA), the study was limited to individuals younger than 40 years of age (mean 23 ± 3.5) with no prior history of joint symptoms or trauma. We profiled a total of 21 biomarkers; 20 biomarkers in synovial fluid and 13 in serum with 12 biomarkers measured in both fluids. Biomarkers analyzed in this study were found to be independent of treatment (P > 0.05) as measured by Mann-Whitney and two-way ANOVA. RESULTS: We observed significant decreases in synovial fluid (sf) biomarker concentrations from baseline to follow-up for (sf)C-Reactive protein (CRP) (P = 0.039), (sf)lubricin (P = 0.008) and the proteoglycan biomarkers: (sf)Glycosaminoglycan (GAG) (P = 0.019), and (sf)Alanine-Arginine-Glycine-Serine (ARGS) aggrecan (P = 0.004). In contrast, we observed significant increases in the collagen biomarkers: (sf)C-terminal crosslinked telopeptide type II collagen (CTxII) (P = 0.012), (sf)C1,2C (P = 0.039), (sf)C-terminal crosslinked telopeptide type I collagen (CTxI) (P = 0.004), and (sf)N-terminal telopeptides of type I collagen (NTx) (P = 0.008). The concentrations of seven biomarkers were significantly higher in synovial fluid than serum suggesting release from the signal knee: IL-1β (P < 0.0001), fetal aggrecan FA846 (P = 0.0001), CTxI (P = 0.0002), NTx (P = 0.012), osteocalcin (P = 0.012), Cartilage oligomeric matrix protein (COMP) (P = 0.0001) and matrix metalloproteinase (MMP)-3 (P = 0.0001). For these seven biomarkers we found significant correlations between the serum and synovial fluid concentrations for only CTxI (P = 0.0002), NTx (P < 0.0001), osteocalcin (P = 0.0002) and MMP-3 (P = 0.038). CONCLUSIONS: These data strongly suggest that the biology after acute injury reflects that seen in cartilage explant models stimulated with pro-inflammatory cytokines, which are characterized by an initial wave of proteoglycan loss followed by subsequent collagen loss. As the rise of collagen biomarkers in synovial fluid occurs within the first month after injury, and as collagen loss is thought to be irreversible, very early treatment with agents to either reduce inflammation and/or reduce collagen loss may have the potential to reduce the onset of future post-traumatic osteoarthritis. TRIAL REGISTRATION: The samples used in this study were derived from a clinical trial NCT00332254 registered with ClinicalTrial.gov

    Patellar Skin Surface Temperature by Thermography Reflects Knee Osteoarthritis Severity

    Get PDF
    BACKGROUND: Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA). METHODS: A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA) participated in this study. Infrared imaging was performed with a Meditherm Med2000™ Pro infrared camera. The reproducibility of infrared imaging of the knee was evaluated through determination of intraclass correlation coefficients (ICCs) for temperature measurements from two images performed 6 months apart in Controls whose knee status was not expected to change. The average cutaneous temperature for each of five knee regions of interest was extracted using WinTes software. Knee x-rays were scored for severity of rOA based on the global Kellgren-Lawrence grading scale. RESULTS: The knee infrared thermal imaging procedure used here demonstrated long-term reproducibility with high ICCs (0.50-0.72 for the various regions of interest) in Controls. Cutaneous temperature of the patella (knee cap) yielded a significant correlation with severity of knee rOA (R = 0.594, P = 0.02). CONCLUSION: The skin temperature of the patellar region correlated with x-ray severity of knee OA. This method of infrared knee imaging is reliable and as an objective measure of a sign of inflammation, temperature, indicates an interrelationship of inflammation and structural knee rOA damage

    First Qualification Study of Serum Biomarkers as Indicators of Total Body Burden of Osteoarthritis

    Get PDF
    BACKGROUND: Osteoarthritis (OA) is a debilitating chronic multijoint disease of global proportions. OA presence and severity is usually documented by x-ray imaging but whole body imaging is impractical due to radiation exposure, time and cost. Systemic (serum or urine) biomarkers offer a potential alternative method of quantifying total body burden of disease but no OA-related biomarker has ever been stringently qualified to determine the feasibility of this approach. The goal of this study was to evaluate the ability of three OA-related biomarkers to predict various forms or subspecies of OA and total body burden of disease. METHODOLOGY/PRINCIPAL FINDINGS: Female participants (461) with clinical hand OA underwent radiography of hands, hips, knees and lumbar spine; x-rays were comprehensively scored for OA features of osteophyte and joint space narrowing. Three OA-related biomarkers, serum hyaluronan (sHA), cartilage oligomeric matrix protein (sCOMP), and urinary C-telopeptide of type II collagen (uCTX2), were measured by ELISA. sHA, sCOMP and uCTX2 correlated positively with total osteophyte burden in models accounting for demographics (age, weight, height): R(2) = 0.60, R(2) = 0.47, R(2) = 0.51 (all p<10(-6)); sCOMP correlated negatively with total joint space narrowing burden: R(2) = 0.69 (p<10(-6)). Biomarkers and demographics predicted 35-38% of variance in total burden of OA (total joint space narrowing or osteophyte). Joint size did not determine the contribution to the systemic biomarker concentration. Biomarker correlation with disease in the lumbar spine resembled that in the rest of the skeleton. CONCLUSIONS/SIGNIFICANCE: We have suspected that the correlation of systemic biomarkers with disease has been hampered by the inability to fully phenotype the burden of OA in a patient. These results confirm the hypothesis, revealed upon adequate patient phenotyping, that systemic joint tissue concentrations of several biomarkers can be quantitative indicators of specific subspecies of OA and of total body burden of disease

    Quantification of the whole-body burden of radiographic osteoarthritis using factor analysis

    Get PDF
    INTRODUCTION: Although osteoarthritis (OA) commonly involves multiple joints, no widely accepted method for quantifying whole-body OA burden exists. Therefore, our aim was to apply factor analytic methods to radiographic OA (rOA) grades across multiple joint sites, representing both presence and severity, to quantify the burden of rOA. METHODS: We used cross-sectional data from the Johnston County Osteoarthritis Project. The sample (n = 2092) had a mean age of 65 ± 11 years, body mass index (BMI) 31 ± 7 kg/m2, with 33% men and 34% African Americans. A single expert reader (intra-rater κ = 0.89) provided radiographic grades based on standard atlases for the hands (30 joints, including bilateral distal and proximal interphalangeal [IP], thumb IP, metacarpophalangeal [MCP] and carpometacarpal [CMC] joints), knees (patellofemoral and tibiofemoral, 4 joints), hips (2 joints), and spine (5 levels [L1/2 to L5/S1]). All grades were entered into an exploratory common factor analysis as continuous variables. Stratified factor analyses were used to look for differences by gender, race, age, and cohort subgroups. RESULTS: Four factors were identified as follows: IP/CMC factor (20 joints), MCP factor (8 joints), Knee factor (4 joints), Spine factor (5 levels). These factors had high internal consistency reliability (Cronbach's α range 0.80 to 0.95), were not collapsible into a single factor, and had moderate between-factor correlations (Pearson correlation coefficient r = 0.24 to 0.44). There were no major differences in factor structure when stratified by subgroup. CONCLUSIONS: The 4 factors obtained in this analysis indicate that the variables contained within each factor share an underlying cause, but the 4 factors are distinct, suggesting that combining these joint sites into one overall measure is not appropriate. Using such factors to reflect multi-joint rOA in statistical models can reduce the number of variables needed and increase precision

    Lumbar spine radiographic features and demographic, clinical, and radiographic knee, hip and hand osteoarthritis: The Johnston County Osteoarthritis Project

    Get PDF
    Objective—1) To determine the prevalence of lumbar spine individual radiographic features (IRF) of disc space narrowing (DSN), osteophytes (OST) and facet joint osteoarthritis (FOA). 2) To describe the frequencies of demographic, clinic and radiographic knee, hip and hand osteoarthritis (OA) across lumbar spine IRF. 3) To determine factors associated with lumbar spine IRF. Methods—A cross-sectional study of 840 participants enrolled in the Johnston County OA Project (2003-4). Sample-based prevalence estimates were generated for each lumbar spine IRF. Associations between lumbar spine IRF and demographic, clinical and peripheral joint OA were determined with logistic regression models. Results—Sample-based prevalence estimates were similar for DSN (57.6%) and FOA (57.9%) but higher for OST (88.1%) with significant differences across race and gender. Hand and knee OA frequencies increased across IRF whereas the effect was absent for hip OA. African Americans had lower odds of FOA (adjusted odds ratio [aOR]=0.45 (95% CI 0.32, 0.62)) while there was no racial association with DSN and OST. Low back symptoms were associated with DSN (aOR=1.37 (95% CI 1.04, 1.80)) but not OST or FOA. Knee OA was associated with OST (aOR=1.62 (95% CI 1.16, 2.27)) and FOA (aOR=1.69 (95% CI 1.15, 2.49)) but not DSN. Hand OA was associated with FOA (aOR=1.67 (95% CI 1.20, 2.28)) but not with DSN or OST. No associations were found with hip OA. Conclusion—These findings underscore the importance of analyzing lumbar spine IRF separately as the associations with demographic, clinic and radiographic knee, hip and hand OA differ widely

    Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice

    Get PDF
    INTRODUCTION: Obesity is a major risk factor for the development of osteoarthritis in both weight-bearing and nonweight-bearing joints. The mechanisms by which obesity influences the structural or symptomatic features of osteoarthritis are not well understood, but may include systemic inflammation associated with increased adiposity. In this study, we examined biomechanical, neurobehavioral, inflammatory, and osteoarthritic changes in C57BL/6J mice fed a high-fat diet. METHODS: Female C57BL/6J mice were fed either a 10% kcal fat or a 45% kcal fat diet from 9 to 54 weeks of age. Longitudinal changes in musculoskeletal function and inflammation were compared with endpoint neurobehavioral and osteoarthritic disease states. Bivariate and multivariate analyses were conducted to determine independent associations with diet, percentage body fat, and knee osteoarthritis severity. We also examined healthy porcine cartilage explants treated with physiologic doses of leptin, alone or in combination with IL-1α and palmitic and oleic fatty acids, to determine the effects of leptin on cartilage extracellular matrix homeostasis. RESULTS: High susceptibility to dietary obesity was associated with increased osteoarthritic changes in the knee and impaired musculoskeletal force generation and motor function compared with controls. A high-fat diet also induced symptomatic characteristics of osteoarthritis, including hyperalgesia and anxiety-like behaviors. Controlling for the effects of diet and percentage body fat with a multivariate model revealed a significant association between knee osteoarthritis severity and serum levels of leptin, adiponectin, and IL-1α. Physiologic doses of leptin, in the presence or absence of IL-1α and fatty acids, did not substantially alter extracellular matrix homeostasis in healthy cartilage explants. CONCLUSIONS: These results indicate that diet-induced obesity increases the risk of symptomatic features of osteoarthritis through changes in musculoskeletal function and pain-related behaviors. Furthermore, the independent association of systemic adipokine levels with knee osteoarthritis severity supports a role for adipose-associated inflammation in the molecular pathogenesis of obesity-induced osteoarthritis. Physiologic levels of leptin do not alter extracellular matrix homeostasis in healthy cartilage, suggesting that leptin may be a secondary mediator of osteoarthritis pathogenesis

    Differences in multijoint radiographic osteoarthritis phenotypes among African Americans and Caucasians: The Johnston County Osteoarthritis Project

    Get PDF
    To define and contrast multiple joint radiographic osteoarthritis (rOA) phenotypes describing hand and whole-body rOA among African Americans and Caucasians
    corecore