52 research outputs found

    Structure of Magnetocentrifugal Disk-Winds: From the Launching Surface to Large Distances

    Get PDF
    Protostellar jets and winds are probably driven magnetocentrifugally from the surface of accretion disks close to the central stellar objects. The exact launching conditions on the disk, such as the distributions of magnetic flux and mass ejection rate, are poorly unknown. They could be constrained from observations at large distances, provided that a robust model is available to link the observable properties of the jets and winds at the large distances to the conditions at the base of the flow. We discuss the difficulties in constructing such large-scale wind models, and describe a novel technique which enables us to numerically follow the acceleration and propagation of the wind from the disk surface to arbitrarily large distances and the collimation of part of the wind into a dense, narrow ``jet'' around the rotation axis. Special attention is paid to the shape of the jet and its mass flux relative to that of the whole wind. The mass flux ratio is a measure of the jet formation efficiency.Comment: 6 pages, figures included. To appear in "The Origins of Stars and Planets: The VLT View". J. Alves and M. McCaughrean, editor

    Nonlinear Criterion for the Stability of Molecular Clouds

    Full text link
    Dynamically significant magnetic fields are routinely observed in molecular clouds, with mass-to-flux ratio lambda = (2 pi sqrt{G}) (Sigma/B) ~ 1 (here Sigma is the total column density and B is the field strength). It is widely believed that ``subcritical'' clouds with lambda < 1 cannot collapse, based on virial arguments by Mestel and Spitzer and a linear stability analysis by Nakano and Nakamura. Here we confirm, using high resolution numerical models that begin with a strongly supersonic velocity dispersion, that this criterion is a fully nonlinear stability condition. All the high-resolution models with lambda <= 0.95 form ``Spitzer sheets'' but collapse no further. All models with lambda >= 1.02 collapse to the maximum numerically resolvable density. We also investigate other factors determining the collapse time for supercritical models. We show that there is a strong stochastic element in the collapse time: models that differ only in details of their initial conditions can have collapse times that vary by as much as a factor of 3. The collapse time cannot be determined from just the velocity dispersion; it depends also on its distribution. Finally, we discuss the astrophysical implications of our results.Comment: 11 pages, 5 figure

    A Unified Model for Bipolar Outflows from Young Stars: Apparent Magnetic Jet Acceleration

    Full text link
    We explore a new, efficient mechanism that can power toroidally magnetized jets up to two to three times their original terminal velocity after they enter a self-similar phase of magnetic acceleration. Underneath the elongated outflow lobe formed by a magnetized bubble, a wide-angle free wind, through the interplay with its ambient toroid, is compressed and accelerated around its axial jet. The extremely magnetic bubble can inflate over its original size, depending on the initial Alfv\'en Mach number MAM_A of the launched flow. The shape-independent slope ∂vr/∂r=2/3t\partial{}v_r/\partial{}r=2/3t is a salient feature of the self-similarity in the acceleration phase. Peculiar kinematic signatures are observable in the position--velocity (PV) diagrams and can combine with other morphological signatures as probes for the density-collimated jets arising in toroidally dominated magnetized winds. The apparent second acceleration is powered by the decrease of the toroidal magnetic field but operates far beyond the scales of the primary magnetocentrifugal launch region and the free asymptotic terminal state. Rich implications may connect the jets arising from the youngest protostellar outflows such as HH 211 and HH 212 and similar systems with parsec-scale jets across the mass and evolutionary spectra.Comment: 21 pages, 8 figures, 1 table, to appear in Astrophysical Journal Letters (2023
    • …
    corecore