3,486 research outputs found
Recommended from our members
Holographic mensuration of suspended particles in aquatic systems
The distribution and dynamics of aggregates in the aquatic environment play an important role in the modelling of biogeochemical processes. Previous work on aggregates in the ocean (e.g. sedimentary 'marine snow' particles), which vary in size from tens of microns to several millimetres, has used electronic counting or conventional photography coupled with image analysis. Here we describe a non-destructive in situ approach by use of holographic mensuration, hologrammetry, that affords greater scope and higher accuracy for the enumeration, sizing, and spatial distribution determination of aggregate particles. By means of two complimentary techniques, in-line and offaxis transmission holography, we present the initial experiments conducted in our laboratory and discuss the preliminaiy results from real image analysis
Recommended from our members
Off-axis transmission holographic system for recording aquatic particles
We describe a holographic system for recording particles suspended in water. The hologram plate is located in air, separated from the test tank by an air/glass/water boundary. The holographic emulsion is therefore unaffected by adverse aquatic conditions within the tank (i.e. surface contamination, non-uniform swelling). The design geometry is intended to minimise the aberrations that arise from recording subjects located in water and replaying their hologram image in air.
Third order aberrations, most crucially spherical aberration and astigmatism, are suppressed to give an experimental resolution of 7 lp/mm using USAF 1951 target in water 600mm from the boundary. Particles (plankton species) in the
sub-millimeter to several millimeters size range are observed at planar sections within the recording volume by visual inspection of the hologram replayed in real image mode
Recommended from our members
In situ off-axis holography of marine plankton
We present an off-axis transmission holographic technique for recording marine plankton in situ within a test tank of 36,000 ml with a pulsed laser in a 40 ns interval. The holographic plate is located in air and is therefore unaffected by aquatic conditions that may cause emulsion degradation (e.g. non-uniform swelling and surface contamination). The reference beam
traverses a path in air only, and thus remains unaffected by dense concentrations of plankton. Third order aberrations, notably spherical aberration and astigmatism, are suppressed to yield an experimental resolution of 7 lp/mm (70 micrometres) with a USAF 1951 target located 600 mm in water from the observation window. Plankton particle counts examined by real image reconstruction show a strong correlation with duplicate samples examined under a microscope
- …