1,023 research outputs found
Root locus diagrams by digital computer
Adaptation of root locus method to programming on IBM 7074 digital compute
Gamma-Ray Burst Afterglow: Polarization and Analytic Light Curves
GRB afterglow polarization is discussed. We find an observable, up to 10%,
polarization, if the magnetic field coherence length grows at about the speed
of light after the field is generated at the shock front. Detection of a
polarized afterglow would show that collisionless ultrarelativistic shocks can
generate strong large scale magnetic fields and confirm the synchrotron
afterglow model. Non-detection, at a 1% level, would imply that either the
synchrotron emission model is incorrect, or that strong magnetic fields, after
they are generated in the shock, somehow manage to stay un-dissipated at
``microscopic'', skin depth, scales. Analytic lightcurves of synchrotron
emission from an ultrarelativistic self-similar blast wave are obtained for an
arbitrary electron distribution function, taking into account the effects of
synchrotron cooling. The peak synchrotron flux and the flux at frequencies much
smaller than the peak frequency are insensitive to the details of the electron
distribution function; hence their observational determination would provide
strong constraints on blast wave parameters.Comment: 19 pages, submitted to Ap
Backgrounds of squeezed relic photons and their spatial correlations
We discuss the production of multi-photons squeezed states induced by the
time variation of the (Abelian) gauge coupling constant in a string
cosmological context. Within a fully quantum mechanical approach we solve the
time evolution of the mean number of produced photons in terms of the squeezing
parameters and in terms of the gauge coupling. We compute the first (amplitude
interference) and second order (intensity interference) correlation functions
of the magnetic part of the photon background. The photons produced thanks to
the variation of the dilaton coupling are strongly bunched for the realistic
case where the growth of the dilaton coupling is required to explain the
presence of large scale magnetic fields and, possibly of a Faraday rotation of
the Cosmic Microwave Background.Comment: 9 pages in LaTex styl
Parameter dependence of magnetized CMB observables
Pre-decoupling magnetic fields affect the scalar modes of the geometry and
produce observable effects which can be constrained also through the use of
current (as opposed to forthcoming) data stemming from the Cosmic Microwave
Background observations. The dependence of the temperature and polarization
angular power spectra upon the parameters of an ambient magnetic field is
encoded in the scaling properties of a set of basic integrals whose derivation
is simplified in the limit of small angular scales. The magnetically-induced
distortions patterns of the relevant observables can be computed analytically
by employing scaling considerations which are corroborated by numerical
results.Comment: 48 pages, 11 figures; corrected minor typos; discussions added; to
appear in Physical Revie
An Arbitrary Curvilinear Coordinate Method for Particle-In-Cell Modeling
A new approach to the kinetic simulation of plasmas in complex geometries,
based on the Particle-in- Cell (PIC) simulation method, is explored. In the two
dimensional (2d) electrostatic version of our method, called the Arbitrary
Curvilinear Coordinate PIC (ACC-PIC) method, all essential PIC operations are
carried out in 2d on a uniform grid on the unit square logical domain, and
mapped to a nonuniform boundary-fitted grid on the physical domain. As the
resulting logical grid equations of motion are not separable, we have developed
an extension of the semi-implicit Modified Leapfrog (ML) integration technique
to preserve the symplectic nature of the logical grid particle mover. A
generalized, curvilinear coordinate formulation of Poisson's equations to solve
for the electrostatic fields on the uniform logical grid is also developed. By
our formulation, we compute the plasma charge density on the logical grid based
on the particles' positions on the logical domain. That is, the plasma
particles are weighted to the uniform logical grid and the self-consistent mean
electrostatic fields obtained from the solution of the logical grid Poisson
equation are interpolated to the particle positions on the logical grid. This
process eliminates the complexity associated with the weighting and
interpolation processes on the nonuniform physical grid and allows us to run
the PIC method on arbitrary boundary-fitted meshes.Comment: Submitted to Computational Science & Discovery December 201
CMB anisotropies due to cosmological magnetosonic waves
We study scalar mode perturbations (magnetosonic waves) induced by a helical
stochastic cosmological magnetic field and derive analytically the
corresponding cosmic microwave background (CMB) temperature and polarization
anisotropy angular power spectra. We show that the presence of a stochastic
magnetic field, or an homogeneous magnetic field, influences the acoustic
oscillation pattern of the CMB anisotropy power spectrum, effectively acting as
a reduction of the baryon fraction. We find that the scalar magnetic energy
density perturbation contribution to the CMB temperature anisotropy is small
compared to the contribution to the CMB -polarization anisotropy.Comment: 17 pages, references added, version accepted for publication in Phys.
Rev.
Stability of the Magnetopause of Disk-Accreting Rotating Stars
We discuss three modes of oscillation of accretion disks around rotating
magnetized neutron stars which may explain the separations of the kilo-Hertz
quasi periodic oscillations (QPO) seen in low mass X-ray binaries. The
existence of these compressible, non-barotropic magnetohydrodynamic (MHD) modes
requires that there be a maximum in the angular velocity of
the accreting material larger than the angular velocity of the star ,
and that the fluid is in approximately circular motion near this maximum rather
than moving rapidly towards the star or out of the disk plane into funnel
flows. Our MHD simulations show this type of flow and profile.
The first mode is a Rossby wave instability (RWI) mode which is radially
trapped in the vicinity of the maximum of a key function at
. The real part of the angular frequency of the mode is
, where is the azimuthal mode number.
The second mode, is a mode driven by the rotating, non-axisymmetric component
of the star's magnetic field. It has an angular frequency equal to the star's
angular rotation rate . This mode is strongly excited near the radius
of the Lindblad resonance which is slightly outside of . The third mode
arises naturally from the interaction of flow perturbation with the rotating
non-axisymmetric component of the star's magnetic field. It has an angular
frequency . We suggest that the first mode with is associated
with the upper QPO frequency, ; that the nonlinear interaction of the
first and second modes gives the lower QPO frequency, ;
and that the nonlinear interaction of the first and third modes gives the lower
QPO frequency , where .Comment: 10 pages, 7 figure
Entropy perturbations and large-scale magnetic fields
An appropriate gauge-invariant framework for the treatment of magnetized
curvature and entropy modes is developed. It is shown that large-scale magnetic
fields, present after neutrino decoupling, affect curvature and entropy
perturbations. The evolution of different magnetized modes is then studied
across the matter-radiation transition both analytically and numerically. From
the observation that, after equality (but before decoupling) the (scalar)
Sachs-Wolfe contribution must be (predominantly) adiabatic, constraints on the
magnetic power spectra are deduced. The present results motivate the
experimental analysis of more general initial conditions of CMB anisotropies
(i.e. mixtures of magnetized adiabatic and isocurvature modes during the
pre-decoupling phase). The role of the possible correlations between the
different components of the fluctuations is partially discussed.Comment: 43 pages, 9 figure
The role of pressure anisotropy in the turbulent intracluster medium
In low-density plasma environments, such as the intracluster medium (ICM),
the Larmour frequency is much larger than the ion-ion collision frequency. In
such a case, the thermal pressure becomes anisotropic with respect to the
magnetic field orientation and the evolution of the turbulent gas is more
correctly described by a kinetic approach. A possible description of these
collisionless scenarios is given by the so-called kinetic magnetohydrodynamic
(KMHD) formalism, in which particles freely stream along the field lines, while
moving with the field lines in the perpendicular direction. In this way a
fluid-like behavior in the perpendicular plane is restored. In this work, we
study fast growing magnetic fluctuations in the smallest scales which operate
in the collisionless plasma that fills the ICM. In particular, we focus on the
impact of a particular evolution of the pressure anisotropy and its
implications for the turbulent dynamics of observables under the conditions
prevailing in the ICM. We present results from numerical simulations and
compare the results which those obtained using an MHD formalism.Comment: 7 pages, 14 figures, Journal of Physics: Conference Serie
- …