1,872 research outputs found
Pressure-induced diamond to beta-tin transition in bulk silicon: a near-exact quantum Monte Carlo study
The pressure-induced structural phase transition from diamond to beta-tin in
silicon is an excellent test for theoretical total energy methods. The
transition pressure provides a sensitive measure of small relative energy
changes between the two phases (one a semiconductor and the other a semimetal).
Experimentally, the transition pressure is well characterized.
Density-functional results have been unsatisfactory. Even the generally much
more accurate diffusion Monte Carlo method has shown a noticeable fixed-node
error. We use the recently developed phaseless auxiliary-field quantum Monte
Carlo (AFQMC) method to calculate the relative energy differences in the two
phases. In this method, all but the error due to the phaseless constraint can
be controlled systematically and driven to zero. In both structural phases we
were able to benchmark the error of the phaseless constraint by carrying out
exact unconstrained AFQMC calculations for small supercells. Comparison between
the two shows that the systematic error in the absolute total energies due to
the phaseless constraint is well within 0.5 mHa/atom. Consistent with these
internal benchmarks, the transition pressure obtained by the phaseless AFQMC
from large supercells is in very good agreement with experiment.Comment: 9 pages, 5 figure
Adverse Effects of Systemic Immunosuppression in Keratolimbal Allograft
Purpose. Keratolimbal allograft (KLAL) is a treatment for limbal stem cell deficiency. One disadvantage is systemic immunosuppression to avoid rejection. Our purpose was to examine the adverse effects of systemic immunosuppression in KLAL. Methods. A retrospective case review of 16 patients with KLAL who received systemic immunosuppression consisting of a corticosteroid, an antimetabolite, and/or a calcineurin inhibitor was performed. Patients were monitored for signs, symptoms, or laboratory evidence of toxicity. Results. Eleven of 16 patients (68%) experienced an adverse effect. The average age of those with adverse effects was 43.5 years and without was 31.4 years. Ten of 11 patients (91%) had resolution during mean followup of 16.4 months. No serious adverse effects occurred. The most common included anemia, hyperglycemia, elevated creatinine, and elevated liver function tests. Prednisone and tacrolimus were responsible for the most adverse effects. Patients with comorbidities were more likely to experience an adverse effect (82% versus 20%, P = 0.036). Conclusions. KLAL requires prolonged systemic immunosuppression. Our data demonstrated that systemic immunosuppression did not result in serious adverse effects in our population and is relatively safe with monitoring for toxicity. In addition, we demonstrated that adverse effects are more likely in older patients with comorbidities
Non-equilibrium phase transitions in biomolecular signal transduction
We study a mechanism for reliable switching in biomolecular
signal-transduction cascades. Steady bistable states are created by system-size
cooperative effects in populations of proteins, in spite of the fact that the
phosphorylation-state transitions of any molecule, by means of which the switch
is implemented, are highly stochastic. The emergence of switching is a
nonequilibrium phase transition in an energetically driven, dissipative system
described by a master equation. We use operator and functional integral methods
from reaction-diffusion theory to solve for the phase structure, noise
spectrum, and escape trajectories and first-passage times of a class of minimal
models of switches, showing how all critical properties for switch behavior can
be computed within a unified framework
Emergent regularities and scaling in armed conflict data
Armed conflict exhibits regularities beyond known power law distributions of
fatalities and duration over varying culture and geography. We systematically
cluster conflict reports from a database of events from Africa spanning
20 years into conflict avalanches. Conflict profiles collapse over a range of
scales. Duration, diameter, extent, fatalities, and report totals satisfy
mutually consistent scaling relations captured with a model combining
geographic spread and local conflict-site growth. The emergence of such social
scaling laws hints at principles guiding conflict evolution
d_{x^2-y^2} Symmetry and the Pairing Mechanism
An important question is if the gap in the high temperature cuprates has
d_{x^2-y^2} symmetry, what does that tell us about the underlying interaction
responsible for pairing. Here we explore this by determining how three
different types of electron-phonon interactions affect the d_{x^2-y^2} pairing
found within an RPA treatment of the 2D Hubbard model. These results imply that
interactions which become more positive as the momentum transfer increases
favor d_{x^2-y^2} pairing in a nearly half-filled band.Comment: 9 pages and 2 eps figs, uses revtex with epsf, in press, PR
Assessing weak hydrogen binding on Ca+ centers: An accurate many-body study with large basis sets
Weak H2 physisorption energies present a significant challenge to even the
best correlated theoretical many-body methods. We use the phaseless
auxiliary-field quantum Monte Carlo (AFQMC) method to accurately predict the
binding energy of Ca+ - 4H2. Attention has recently focused on this model
chemistry to test the reliability of electronic structure methods for H2
binding on dispersed alkaline earth metal centers. A modified Cholesky
decomposition is implemented to realize the Hubbard-Stratonovich transformation
efficiently with large Gaussian basis sets. We employ the largest
correlation-consistent Gaussian type basis sets available, up to cc-pCV5Z for
Ca, to accurately extrapolate to the complete basis limit. The calculated
potential energy curve exhibits binding with a double-well structure.Comment: 10 pages, 7 figures. Submitted to JC
Haptic guidance improves the visuo-manual tracking of trajectories
BACKGROUND: Learning to perform new movements is usually achieved by
following visual demonstrations. Haptic guidance by a force feedback device is
a recent and original technology which provides additional proprioceptive cues
during visuo-motor learning tasks. The effects of two types of haptic
guidances-control in position (HGP) or in force (HGF)-on visuo-manual tracking
("following") of trajectories are still under debate. METHODOLOGY/PRINCIPALS
FINDINGS: Three training techniques of haptic guidance (HGP, HGF or control
condition, NHG, without haptic guidance) were evaluated in two experiments.
Movements produced by adults were assessed in terms of shapes (dynamic time
warping) and kinematics criteria (number of velocity peaks and mean velocity)
before and after the training sessions. CONCLUSION/SIGNIFICANCE: These results
show that the addition of haptic information, probably encoded in force
coordinates, play a crucial role on the visuo-manual tracking of new
trajectories
Movement variability in stroke patients and controls performing two upper limb functional tasks: a new assessment methodology
Background: In the evaluation of upper limb impairment post stroke there remains a gap between detailed kinematic analyses with expensive motion capturing systems and common clinical assessment tests. In particular, although many clinical tests evaluate the performance of functional
tasks, metrics to characterise upper limb kinematics are generally not applicable to such tasks and very limited in scope. This paper reports on a novel, user-friendly methodology that allows for the assessment of both signal magnitude and timing variability in upper limb movement trajectories during functional task performance. In order to demonstrate the technique, we report on a study
in which the variability in timing and signal magnitude of data collected during the performance of two functional tasks is compared between a group of subjects with stroke and a group of individually matched control subjects.
Methods: We employ dynamic time warping for curve registration to quantify two aspects of movement variability: 1) variability of the timing of the accelerometer signals' characteristics and 2) variability of the signals' magnitude. Six stroke patients and six matched controls performed several trials of a unilateral ('drinking') and a bilateral ('moving a plate') functional task on two different days, approximately 1 month apart. Group differences for the two variability metrics were investigated on both days.
Results: For 'drinking from a glass' significant group differences were obtained on both days for
the timing variability of the acceleration signals' characteristics (p = 0.002 and p = 0.008 for test and
retest, respectively); all stroke patients showed increased signal timing variability as compared to
their corresponding control subject. 'Moving a plate' provided less distinct group differences.
Conclusion: This initial application establishes that movement variability metrics, as determined
by our methodology, appear different in stroke patients as compared to matched controls during unilateral task performance ('drinking'). Use of a user-friendly, inexpensive accelerometer makes this methodology feasible for routine clinical evaluations. We are encouraged to perform larger studies to further investigate the metrics' usefulness when quantifying levels of impairment
- …