32 research outputs found

    NFÎșB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP

    Get PDF
    Fas (APO-1/CD95) is the prototypic death receptor, and the molecular mechanisms of Fas-induced apoptosis are comparably well understood. Here, we show that Fas activates NFÎșB via a pathway involving RIP, FADD, and caspase-8. Remarkably, the enzymatic activity of the latter was dispensable for Fas-induced NFÎșB signaling pointing to a scaffolding-related function of caspase-8 in nonapoptotic Fas signaling. NFÎșB was activated by overexpressed FLIPL and FLIPS in a cell type–specific manner. However, in the context of Fas signaling both isoforms blocked FasL-induced NFÎșB activation. Moreover, down-regulation of both endogenous FLIP isoforms or of endogenous FLIPL alone was sufficient to enhance FasL-induced expression of the NFÎșB target gene IL8. As NFÎșB signaling is inhibited during apoptosis, FasL-induced NFÎșB activation was most prominent in cells that were protected by Bcl2 expression or caspase inhibitors and expressed no or minute amounts of FLIP. Thus, protection against Fas-induced apoptosis in a FLIP-independent manner converted a proapoptotic Fas signal into an inflammatory NFÎșB-related response

    The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-kappaB

    Get PDF
    Histone deacetylase (HDAC) 3, as a cofactor in co-repressor complexes containing silencing mediator for retinoid or thyroid-hormone receptors (SMRT) and nuclear receptor co-repressor (N-CoR), has been shown to repress gene transcription in a variety of contexts. Here, we reveal a novel role for HDAC3 as a positive regulator of IL-1-induced gene expression. Various experimental approaches involving RNAi-mediated knockdown, conditional gene deletion or small molecule inhibitors indicate a positive role of HDAC3 for transcription of the majority of IL-1-induced human or murine genes. This effect was independent from the gene regulatory effects mediated by the broad-spectrum HDAC inhibitor trichostatin A (TSA) and thus suggests IL-1-specific functions for HDAC3. The stimulatory function of HDAC3 for inflammatory gene expression involves a mechanism that uses binding to NF-?B p65 and its deacetylation at various lysines. NF-?B p65-deficient cells stably reconstituted to express acetylation mimicking forms of p65 (p65 K/Q) had largely lost their potential to stimulate IL-1-triggered gene expression, implying that the co-activating property of HDAC3 involves the removal of inhibitory NF-?B p65 acetylations at K122, 123, 314 and 315. These data describe a novel function for HDAC3 as a co-activator in inflammatory signaling pathways and help to explain the anti-inflammatory effects frequently observed for HDAC inhibitors in (pre)clinical use

    The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-ÎșB

    Get PDF
    Histone deacetylase (HDAC) 3, as a cofactor in co-repressor complexes containing silencing mediator for retinoid or thyroid-hormone receptors (SMRT) and nuclear receptor co-repressor (N-CoR), has been shown to repress gene transcription in a variety of contexts. Here, we reveal a novel role for HDAC3 as a positive regulator of IL-1-induced gene expression. Various experimental approaches involving RNAi-mediated knockdown, conditional gene deletion or small molecule inhibitors indicate a positive role of HDAC3 for transcription of the majority of IL-1-induced human or murine genes. This effect was independent from the gene regulatory effects mediated by the broad-spectrum HDAC inhibitor trichostatin A (TSA) and thus suggests IL-1-specific functions for HDAC3. The stimulatory function of HDAC3 for inflammatory gene expression involves a mechanism that uses binding to NF-ÎșB p65 and its deacetylation at various lysines. NF-ÎșB p65-deficient cells stably reconstituted to express acetylation mimicking forms of p65 (p65 K/Q) had largely lost their potential to stimulate IL-1-triggered gene expression, implying that the co-activating property of HDAC3 involves the removal of inhibitory NF-ÎșB p65 acetylations at K122, 123, 314 and 315. These data describe a novel function for HDAC3 as a co-activator in inflammatory signaling pathways and help to explain the anti-inflammatory effects frequently observed for HDAC inhibitors in (pre)clinical us

    Involvement of nuclear factor-kappa B in bcl-xL-induced interleukin 8 expression in glioblastoma

    No full text
    We recently reported that bcl-xL regulates interleukin 8 (CXCL8) protein expression and promoter activity in glioblastoma cells. In this paper we demonstrate that CXCL8 induction by bcl-xL is mediated through a nuclear factor-kappa B (NF-kB)-dependent mechanism. Mutational studies on the CXCL8 promoter showed that NF-kB binding site was required for bcl-xL-induced promoter activity and an enhanced nuclear expression of NF-kB subunits p65 and p50 was observed after bcl-xL over-expression. Electrophoretic mobility shift assay showed an increased DNA-binding activity of NF-kB in bcl-xL over-expressing cells and the use of specific antibodies confirmed the involvement of p65 and p50 in NF-kB activity on CXCL8 promoter sequence. NF-kB activity regulation by bcl-xL involved IkBα and IKK complex signaling pathway. In fact, bcl-xL over-expression induced a decrease of cytoplasmic expression of the IkBα protein, paralleled by an increase in the phosphorylation of the same IkBα and IKKα/ÎČ. Moreover, the down-regulation of the ectopic or endogenous bcl-xL expression through RNA interference confirmed the ability of bcl-xL to modulate NF-kB pathway, and the transient expression of a degradation-resistant form of the cytoplasmic NF-kB inhibitor IkBα in bcl-xL transfectants confirmed the involvement of that inhibitor in bcl-xL-induced CXCL8 expression and promoter activity. In conclusion, our results demonstrate the role of NF-kB as the mediator of bcl-xL-induced CXCL8 up-regulation in glioblastoma cells. © 2008 The Authors

    Death Receptor-Induced Signaling Pathways Are Differentially Regulated by Gamma Interferon Upstream of Caspase 8 Processing

    No full text
    FasL and gamma interferon (IFN-Îł) are produced by activated T cells and NK cells and synergistically induce apoptosis. Although both cytokines can also elicit proinflammatory responses, a possible cross talk of these ligands with respect to nonapoptotic signaling has been poorly addressed. Here, we show that IFN-Îł sensitizes KB cells for apoptosis induction by facilitating death-inducing signaling complex (DISC)-mediated caspase 8 processing. Moreover, after protection against death receptor-induced apoptosis by caspase inhibition or Bcl2 overexpression, IFN-Îł also sensitized for Fas- and TRAIL death receptor-mediated NF-ÎșB activation leading to synergistic upregulation of a variety of proinflammatory genes. In contrast, Fas-mediated activation of JNK, p38, and p42/44 occurred essentially independent from IFN-Îł sensitization, indicating that the apoptosis- and NF-ÎșB-related FasL-IFN-Îł cross talk was not due to a simple global enhancement of Fas signaling. Overexpression of FLIP(L) and FLIP(S) inhibited Fas- as well as TRAIL-mediated NF-ÎșB activation and apoptosis induction in IFN-Îł-primed cells suggesting that both responses are coregulated at the level of the DISC
    corecore