9 research outputs found

    All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances

    Get PDF
    Nanostructured magnetic materials provide an efficient tool for light manipulation on sub-nanosecond and sub-micron scales, and allow for the observation of the novel effects which are fundamentally impossible in smooth films. For many cases of practical importance, it is vital to observe the magneto-optical intensity modulation in a dual-polarization regime. However, the nanostructures reported on up to date usually utilize a transverse Kerr effect and thus provide light modulation only for p-polarized light. We present a concept of a transparent magnetic metasurface to solve this problem, and demonstrate a novel mechanism for magneto-optical modulation. A 2D array of bismuth-substituted iron-garnet nanopillars on an ultrathin iron-garnet slab forms a metasurface supporting quasi-waveguide mode excitation. In contrast to plasmonic structures, the all-dielectric magnetic metasurface is shown to exhibit much higher transparency and superior quality-factor resonances, followed by a multifold increase in light intensity modulation. The existence of a wide variety of excited mode types allows for advanced light control: transmittance of both p- and s-polarized illumination becomes sensitive to the medium magnetization, something that is fundamentally impossible in smooth magnetic films. The proposed metasurface is very promising for sensing, magnetometry and light modulation applications

    Spectrally Selective Detection of Short Spin Waves in Magnetoplasmonic Nanostructures via the Magneto-Optical Intensity Effect

    No full text
    A method of spectrally selective detection of short spin waves (or magnons) by means of the transverse magneto-optical (MO) intensity effect in transmission in the magnetoplasmonic nanostructure is proposed. We considered the spin waves with a wavelength equal to or less than (by an integer number of times) the period of the plasmonic structure, that is, of the order of hundreds of nanometers or 1–2 μm. The method is based on the analysis of the MO effect spectrum versus the modulation of the sample magnetization (created by the spin wave) and related spatial symmetry breaking in the magnetic layer. The spatial symmetry breaking leads to the appearance of the MO effect modulation at the normal incidence of light in the spectral range of the optical states (the SPP and the waveguide modes) and the breaking of the antisymmetry of the effect with respect to the sign of the incidence angle of light. We reveal that the magnitude of the MO effect varies periodically depending on the spatial shift of the spin wave with respect to the plasmonic grating. The period of this modulation is equal to the period of the spin wave. All these facts allow for the detection of spin waves of a certain wavelength propagating in a nanostructure by measuring the MO response

    Magneto-optics of subwavelength all-dielectric gratings

    No full text
    We provide the experimental research on a novel type of all-dielectric magnetic structure designed to achieve an enhanced magneto-optical response. 1D grating fabricated via etching of bismuth substituted iron garnet film supports the excitation of optical guided modes, which are highly sensitive to the external magnetic field. A unique feature of proposed structure is the synergetic combination of high transparency, tunability, high Q-factor of the resonances and superior magneto-optical response that is two orders higher in magnitude than in the non-structured smooth iron-garnet film. The considered all-dielectric magnetic garnet structures have great potential in various fields including the magneto-optical modulation of light, biosensing and magnetometry

    All-Dielectric Nanophotonics Enables Tunable Excitation of the Exchange Spin Waves

    No full text
    Launching and controlling magnons with laser pulses opens up new routes for applications including optomagnetic switching and all-optical spin wave emission and enables new approaches for information processing with ultralow energy dissipation. However, subwavelength light localization within the magnetic structures leading to efficient magnon excitation that does not inherently absorb light has still been missing. Here, we propose to marriage the laser-induced ultrafast magnetism and nanophotonics to efficiently excite and control spin dynamics in magnetic dielectric structures. We demonstrate that nanopatterning by a 1D grating of trenches allows localization of light in spots with sizes of tens of nanometers and thus launch the exchange standing spin waves of different orders. The relative amplitude of the exchange and magnetostatic spin waves can be adjusted on demand by modifying laser pulse polarization, incidence angle, and wavelength. Nanostructuring of the magnetic media provides a unique possibility for the selective spin manipulation, a key issue for further progress of magnonics, spintronics, and quantum technologies
    corecore