4 research outputs found

    Alpha Net: Adaptation with Composition in Classifier Space

    Full text link
    Deep learning classification models typically train poorly on classes with small numbers of examples. Motivated by the human ability to solve this task, models have been developed that transfer knowledge from classes with many examples to learn classes with few examples. Critically, the majority of these models transfer knowledge within model feature space. In this work, we demonstrate that transferring knowledge within classified space is more effective and efficient. Specifically, by linearly combining strong nearest neighbor classifiers along with a weak classifier, we are able to compose a stronger classifier. Uniquely, our model can be implemented on top of any existing classification model that includes a classifier layer. We showcase the success of our approach in the task of long-tailed recognition, whereby the classes with few examples, otherwise known as the "tail" classes, suffer the most in performance and are the most challenging classes to learn. Using classifier-level knowledge transfer, we are able to drastically improve - by a margin as high as 12.6% - the state-of-the-art performance on the "tail" categories.Comment: Under revie

    A Brain Phenotype for Stressor‐Evoked Blood Pressure Reactivity

    Get PDF
    Background Individuals who exhibit large‐magnitude blood pressure (BP) reactions to acute psychological stressors are at risk for hypertension and premature death by cardiovascular disease. This study tested whether a multivariate pattern of stressor‐evoked brain activity could reliably predict individual differences in BP reactivity, providing novel evidence for a candidate neurophysiological source of stress‐related cardiovascular risk. Methods and Results Community‐dwelling adults (N=310; 30–51 years; 153 women) underwent functional magnetic resonance imaging with concurrent BP monitoring while completing a standardized battery of stressor tasks. Across individuals, the battery evoked an increase systolic and diastolic BP relative to a nonstressor baseline period (M ∆systolic BP/∆diastolic BP=4.3/1.9 mm Hg [95% confidence interval=3.7–5.0/1.4–2.3 mm Hg]). Using cross‐validation and machine learning approaches, including dimensionality reduction and linear shrinkage models, a multivariate pattern of stressor‐evoked functional magnetic resonance imaging activity was identified in a training subsample (N=206). This multivariate pattern reliably predicted both systolic BP (r=0.32; P<0.005) and diastolic BP (r=0.25; P<0.01) reactivity in an independent subsample used for testing and replication (N=104). Brain areas encompassed by the pattern that were strongly predictive included those implicated in psychological stressor processing and cardiovascular responding through autonomic pathways, including the medial prefrontal cortex, anterior cingulate cortex, and insula. Conclusions A novel multivariate pattern of stressor‐evoked brain activity may comprise a phenotype that partly accounts for individual differences in BP reactivity, a stress‐related cardiovascular risk factor

    Deep learning powered real-time identification of insects using citizen science data

    No full text
    Insect-pests significantly impact global agricultural productivity and quality. Effective management involves identifying the full insect community, including beneficial insects and harmful pests, to develop and implement integrated pest management strategies. Automated identification of insects under real-world conditions presents several challenges, including differentiating similar-looking species, intra-species dissimilarity and inter-species similarity, several life cycle stages, camouflage, diverse imaging conditions, and variability in insect orientation. A deep-learning model, InsectNet, is proposed to address these challenges. InsectNet is endowed with five key features: (a) utilization of a large dataset of insect images collected through citizen science; (b) label-free self-supervised learning for large models; (c) improving prediction accuracy for species with a small sample size; (d) enhancing model trustworthiness; and (e) democratizing access through streamlined MLOps. This approach allows accurate identification (>96% accuracy) of over 2500 insect species, including pollinator (e.g., butterflies, bees), parasitoid (e.g., some wasps and flies), predator species (e.g., lady beetles, mantises, dragonflies) and harmful pest species (e.g., armyworms, cutworms, grasshoppers, stink bugs). InsectNet can identify invasive species, provide fine-grained insect species identification, and work effectively in challenging backgrounds. It also can abstain from making predictions when uncertain, facilitating seamless human intervention and making it a practical and trustworthy tool. InsectNet can guide citizen science data collection, especially for invasive species where early detection is crucial. Similar approaches may transform other agricultural challenges like disease detection and underscore the importance of data collection, particularly through citizen science efforts..This is a pre-print of the article Chiranjeevi, Shivani, Mojdeh Sadaati, Zi K. Deng, Jayanth Koushik, Talukder Z. Jubery, Daren Mueller, Matthew EO Neal et al. "Deep learning powered real-time identification of insects using citizen science data." arXiv preprint arXiv:2306.02507 (2023). DOI: 10.48550/arXiv.2306.02507. Copyright 2023 The Authors. Attribution 4.0 International (CC BY 4.0) Posted with permission
    corecore