3 research outputs found
Discrete Yamabe problem for polyhedral surfaces
We introduce a new discretization of the Gaussian curvature on piecewise at surfaces. As the prime new feature the curvature is scaled by the factor 1/r2 upon scaling the metric globally with the factor r. We develop a variational principle to tackle the corresponding discrete uniformisation theorem – we show that each piecewise at surface is discrete conformally equivalent to one with constant discrete Gaussian curvature. This surface is in general not unique. We demonstrate uniqueness for particular cases and disprove it in general by providing explicit counterexamples. Special attention is paid to dealing with change of combinatorics
Discrete yamabe problem for polyhedral surfaces
We study a new discretization of the Gaussian curvature for polyhedral surfaces. This discrete Gaussian curvature is defined on each conical singularity of a polyhedral surface as the quotient of the angle defect and the area of the Voronoi cell corresponding to the singularity. We divide polyhedral surfaces into discrete conformal classes using a generalization of discrete conformal equivalence pioneered by Feng Luo. We subsequently show that, in every discrete conformal class, there exists a polyhedral surface with constant discrete Gaussian curvature. We also provide explicit examples to demonstrate that this surface is in general not unique