8 research outputs found

    FLUKA-MARS15 simulations to optimize the Fermilab PIP-II movable beam absorber

    No full text
    PIP-II is the Fermilab's flagship project to provide powerful, high-intensity proton beams to the laboratory's experiments. The heart of the PIP-II project is an H- 800 MeV superconducting linear accelerator. In order to commission the beam and operate safely the linac, several constraints were evaluated. The design of a movable 5 kW beam absorber was finalized to allow staged beam commissioning in different linac locations. Prompt and residual radiation levels were calculated, and radiation shields were optimized to keep those values within the acceptable levels in the areas surrounding beam absorber. Monte Carlo calculations with FLUKA and MARS15 codes are presented in the paper to support these studies.PIP-II is the Fermilab's flagship project to provide powerful, high-intensity proton beams to the laboratory's experiments. The heart of the PIP-II project is an H- 800 MeV superconducting linear accelerator. In order to commission the beam and operate safely the linac, several constraints were evaluated. The design of a movable 5 kW beam absorber was finalized to allow staged beam commissioning in different linac locations. Prompt and residual radiation levels were calculated, and radiation shields were optimized to keep those values within the acceptable levels in the areas surrounding beam absorber. Monte Carlo calculations with FLUKA and MARS15 codes are presented in the paper to support these studies

    Fermilab main injector: High intensity operation and beam loss control

    No full text
    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector
    corecore