1,190 research outputs found
Origin of charge density at LaAlO3-on-SrTiO3 hetero-interfaces; possibility of intrinsic doping
As discovered by Ohtomo et al., a large sheet charge density with high
mobility exists at the interface between SrTiO3 and LaAlO3. Based on transport,
spectroscopic and oxygen-annealing experiments, we conclude that extrinsic
defects in the form of oxygen vacancies introduced by the pulsed laser
deposition process used by all researchers to date to make these samples is the
source of the large carrier densities. Annealing experiments show a limiting
carrier density. We also present a model that explains the high mobility based
on carrier redistribution due to an increased dielectric constant.Comment: 14 pages, 3 figures, 1 table; accepted for publication in Phys. Rev.
Lett
Location of sugars in multilamellar membranes at low hydration
Severe dehydration is lethal for most biological species. However, there are a number of organisms which have evolved mechanisms to avoid damage during dehydration. One of these mechanisms is the accumulation of small solutes (e.g. sugars), which have been shown to preserve membranes by inhibiting deleterious phase changes at low hydration. Specifically, sugars reduce the gel to fluid phase transition temperatures of model lipid/water mixtures. However, there is a debate about the precise mechanism, the resolution of which hinges on the location of the sugars. In excess water, it has been observed using contrast variation SANS that the sugar concentration in the excess phase is higher than in the interlamellar region [Deme and Zemb, J. Appl. Crystallog. 33 (2000) 569]. This raises two questions regarding the location of the sugars at low hydrations: first, does the system phase separate to give a sugar/water phase in equilibrium with a lipid/water/sugar lamellar region (with different sugar concentrations); and second, is the sugar in the interlamellar region uniformly distributed, or does it concentrate preferentially either in close proximity to the lipids, or towards the center of the interbilayer region. In this paper we present the preliminary results of measurements using contrast variation SANS to determine the location of sugars in lipid/water mixtures
Invariant expansion for the trigonal band structure of graphene
We present a symmetry analysis of the trigonal band structure in graphene,
elucidating the transformational properties of the underlying basis functions
and the crucial role of time-reversal invariance. Group theory is used to
derive an invariant expansion of the Hamiltonian for electron states near the K
points of the graphene Brillouin zone. Besides yielding the characteristic
k-linear dispersion and higher-order corrections to it, this approach enables
the systematic incorporation of all terms arising from external electric and
magnetic fields, strain, and spin-orbit coupling up to any desired order.
Several new contributions are found, in addition to reproducing results
obtained previously within tight-binding calculations. Physical ramifications
of these new terms are discussed.Comment: 10 pages, 1 figure; expanded version with more details and additional
result
Optical-Model Description of Time-Reversal Violation
A time-reversal-violating spin-correlation coefficient in the total cross
section for polarized neutrons incident on a tensor rank-2 polarized target is
calculated by assuming a time-reversal-noninvariant, parity-conserving
``five-fold" interaction in the neutron-nucleus optical potential. Results are
presented for the system for neutron incident energies
covering the range 1--20 MeV. From existing experimental bounds, a strength of
keV is deduced for the real and imaginary parts of the five-fold
term, which implies an upper bound of order on the relative -odd
strength when compared to the central real optical potential.Comment: 11 pages (Revtex
Generalized "Quasi-classical" Ground State for an Interacting Two Level System
We treat a system (a molecule or a solid) in which electrons are coupled
linearly to any number and type of harmonic oscillators and which is further
subject to external forces of arbitrary symmetry. With the treatment restricted
to the lowest pair of electronic states, approximate "vibronic"
(vibration-electronic) ground state wave functions are constructed having the
form of simple, closed expressions. The basis of the method is to regard
electronic density operators as classical variables. It extends an earlier
"guessed solution", devised for the dynamical Jahn-Teller effect in cubic
symmetry, to situations having lower (e.g., dihedral) symmetry or without any
symmetry at all. While the proposed solution is expected to be quite close to
the exact one, its formal simplicity allows straightforward calculations of
several interesting quantities, like energies and vibronic reduction (or Ham)
factors. We calculate for dihedral symmetry two different -factors (""
and "") and a -factor. In simplified situations we obtain . The formalism enables quantitative estimates to be made for the dynamical
narrowing of hyperfine lines in the observed ESR spectrum of the dihedral
cyclobutane radical cation.Comment: 28 pages, 4 figure
- …