5 research outputs found
Recommended from our members
The fate of the Caspian Sea under projected climate change and water extraction during the 21st century
The Caspian Sea (CS) delivers considerable ecosystem services to millions of people. It experienced water level variations of 3 m during the 20th century alone. Robust scenarios of future CS level are vital to inform environmental risk management and water-use planning. In this study we investigated the water budget variation in the CS drainage basin and its potential impact on CS level during the 21st century using projected climate from selected climate change scenarios of shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs), and explored the impact of human extractions. We show that the size of the CS prescribed in climate models determines the modelled water budgets for both historical and future projections. Most future projections show drying over the 21st century. The moisture deficits are more pronounced for extreme radiative forcing scenarios (RCP8.5/SSP585) and for models where a larger CS is prescribed. By 2100, up to 8 (10) m decrease in CS level is found using RCP4.5 (RCP8.5) models, and up to 20 (30) m for SSP245 (SSP585) scenario models. Water extraction rates are as important as climate in controlling future CS level, with potentially up to 7 m further decline, leading to desiccation of the shallow northern CS. This will have wide-ranging implications for the livelihoods of the surrounding communities; increasing vulnerability to freshwater scarcity, transforming ecosystems, as well as impacting the climate system. Caution should be exercised when using individual models to inform policy as projected CS level is so variable between models. We identify that many climate models either ignore, or do not properly prescribe, CS area. No future climate projections include any changes in CS surface area, even when the catchment is projected to be considerably drier. Coupling between atmosphere and lakes within climate models would be a significant advance to capture crucial two-way feedbacks
Recommended from our members
What are the drivers of Caspian Sea level variation during the late Quaternary?
Quaternary Caspian Sea level variations depended on geophysical processes (affecting the opening and closing of gateways and basin size/shape) and hydro-climatological processes (affecting water balance). Disentangling the drivers of past Caspian Sea level variation, as well as the mechanisms by which they impacted the Caspian Sea level variation, is much debated. In this study we examine the relative impacts of hydroclimatic change, ice-sheet accumulation and melt, and isostatic adjustment on Caspian Sea level change. We performed model analysis of ice-sheet and hydroclimate impacts on Caspian Sea level and compared these with newly collated published palaeo-Caspian sea level data for the last glacial cycle. We used palaeoclimate model simulations from a global coupled ocean-atmosphere-vegetation climate model, HadCM3, and ice-sheet data from the ICE-6G_C glacial isostatic adjustment model. Our results show that ice-sheet meltwater during the last glacial cycle played a vital role in Caspian Sea level variations, which is in agreement with hypotheses based on palaeo-Caspian Sea level information. The effect was directly linked to the reorganization and expansion of the Caspian Sea palaeo-drainage system resulting from topographic change. The combined contributions from meltwater and runoff from the expanded basin area were primary factors in the Caspian Sea transgression during the deglaciation period between 20 and 15 kyr BP. Their impact on the evolution of Caspian Sea level lasted until around 13 kyr BP. Millennial scale events (Heinrich events and the Younger Dryas) negatively impacted the surface water budget of the Caspian Sea but their influence on Caspian Sea level variation was short-lived and was outweighed by the massive combined meltwater and runoff contribution over the expanded basin
Recommended from our members
Impacts of variations in Caspian Sea surface area on catchment-scale and large-scale climate
The Caspian Sea (CS) is the largest inland lake in the world. Large variations in sea level and surface area occurred in the past and are projected for the future. The potential impacts on regional and large-scale hydroclimate are not well understood. Here, we examine the impact of CS area on climate within its catchment and across the northern hemisphere, for the first time with a fully coupled climate model. The Community Earth System Model (CESM1.2.2) is used to simulate the climate of four scenarios: (1) larger than present CS area, (2) current area, (3) smaller than present area, and (4) no-CS scenario. The results reveal large changes in the regional atmospheric water budget. Evaporation (E) over the sea increases with increasing area, while precipitation (P) increases over the south-west CS with increasing area. P-E over the CS catchment decreases as CS surface area increases, indicating a dominant negative lake-evaporation feedback. A larger CS reduces summer surface air temperatures and increases winter temperatures. The impacts extend eastwards, where summer precipitation is enhanced over central Asia and the north-western Pacific experiences warming with reduced winter sea ice. Our results also indicate weakening of the 500-hPa troughs over the northern Pacific with larger CS area. We find a thermal response triggers a southward shift of the upper troposphere jet stream during summer. Our findings establish that changing CS area results in climate impacts of such scope that CS area variations should be incorporated into climate model simulations, including palaeo and future scenarios.
Plain Language Summary
The Caspian Sea is the largest land-locked water body in the world. It is filled by rivers draining a vast region from northern Russia to Iran. The size of the Caspian Sea has varied considerably over recent centuries and millennia due to various factors, including changes in climate. Conversely, as the area of the sea changes it also has impacts on the climate, but there are significant questions about how and where those impacts would be felt. In this study we used a state-of-the-art climate model in which we specified different sizes of Caspian Sea in order to examine how the climate changes as its area increases. We observed that the local seasonal cycle of temperatures gets smaller, and evaporation increases, while there are more spatially complex changes in local rainfall. Furthermore, the impacts on atmospheric circulation occur as far as the north Pacific, with resulting increases in temperature and decreases in sea-ice coverage in winter as the Caspian area increases. The climate impacts are so significant and geographically extensive that climate models used to simulate climate change (both in future and past scenarios) should incorporate changes to the Caspian Sea area if they are to robustly model regional climate
Recommended from our members
Drivers and feedbacks impacting the Caspian Sea hydroclimate
The Caspian Sea is the world’s largest land-locked lake. It plays a key role in the
Pontocaspian region, with a unique ecosystem providing numerous ecosystem services to
millions of people. Large variations in Caspian Sea level have occurred in the past and are
projected for the future. However, there is considerable debate about the importance of
different drivers and feedbacks leading to these variations. The primary aim of this thesis is
to use a modelling approach to improve our understanding of Caspian Sea hydroclimate and
sea level from the late Quaternary to the end of the 21st century.
Firstly, contributions to Caspian Sea level from glacial-interglacial climate change,
topographic changes due to ice-sheet loading, and ice-sheet meltwater were explored by
combining climate model simulations and ice-sheet reconstructions to drive a hydrological
model. The results show that the reorganization of river drainage systems due to
Fennoscandian ice-sheet growth and retreat played the dominant role in the variation of the
Caspian Sea level in the late glacial high-stand, while hydroclimate change was the major
factor leading to the early Holocene low-stand.
Secondly, given that large changes inCaspian Sea area will accompany changes in sea level,
a separate climate model experiment examined the extent and magnitude of subsequent
climate feedbacks. Results indicate an important local negative lake surface-evaporation
feedback and remote teleconnections, impacting as far as the North Pacific. This also
demonstrates the need for accurate representation of the Caspian Sea in climate models.
Finally, a hydrological balance model was used to explore future Caspian Sea level changes
based on multi-model climate projections from the Coupled Model Intercomparison Project
(CMIP5 and CMIP6) and idealized water extraction scenarios. The combined impacts of
anthropogenic warming and water withdrawals will lead to a decline in Caspian Sea level and
the desiccation of the shallow northern Caspian Sea before 2100. This will have multifaceted
implications for the surrounding communities, increasing freshwater scarcity, transforming
ecosystems, and impacting the climate system
Simulated mean climate response to Caspian Sea area change using the Community Earth System Model (CESM1.2.2)
The Caspian Sea (CS) is the largest inland lake in the world. Large variations in sea level and surface area occurred in the past and are projected for the future. The potential impacts on regional and large-scale hydroclimate are not well understood. Here, we examine the impact of CS area on climate within its catchment and in the wider northern hemisphere. The Community Earth System Model (CESM1.2.2) is used to simulate the climate of four scenarios: (1) larger than present CS area, (2) current area, (3) smaller than present area, and (4) no-CS scenario. The results reveal large changes in the regional atmospheric water budget. Evaporation (E) over the sea increases with increasing area, while precipitation (P) increases over the south-west CS with increasing area. P-E over the CS catchment decreases as CS surface area increases, indicating a dominant negative lake-evaporation feedback. A larger CS area reduces summer surface air temperatures and increases winter temperatures. The impacts extend eastwards, where summer precipitation is enhanced over central Asia and the north-western Pacific region experiences warming with sea ice reduction in winter. Our results also indicate a weakening of the 500-hPa troughs over the northern Pacific with larger CS area. Lastly, we find a thermal response triggers a southward shift of the jet stream in the upper troposphere during summer. Our findings establish that changing CS area results in climate impacts of such scope that CS area variation should be considered for incorporation into climate model simulations, including palaeo and future scenarios