16 research outputs found

    ANTIOXIDANT ACTIVITY AND ANTIPROLIFERATIVE ACTION OF METHANOLIC EXTRACT OF LIQUORICE (GLYCYRRHIZA GLABRA) IN HEPG2 CELL LINE

    Get PDF
    Objective: To evaluate the in vitro antioxidant activity of liquorice (Glycyrrhiza glabra) against H2O2 induced oxidative stress in HepG2 cell line.Methods: Antioxidant activity of methanolic extracts of Glycyrrhiza glabra was investigated by measuring total phenolic content using folin-ciocalteu reagent (FCR), free radical scavenging activity by DPPH and ferric reducing antioxidant power (FRAP). The presence of phenolic compounds and flavonoids in the extract was confirmed by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. Furthermore, the protective effect of methanolic extract of Glycyrrhiza glabra against oxidative stress induced by H2O2 in HepG2 cells was investigated by MTT assay. HepG2 cells were exposed with five different treatments viz. liquorice, H2O2, ascorbic acid, H2O2+liquorice and H2O2+ascorbic acid, to explore the effect of the extract on malondialdehyde (MDA) production, catalase activity, and glutathione reductase levels.Results: The total phenolic content estimated in Glycyrrhiza glabra extract was found to be 241.47 µg per 1000 µg/ml of methanolic extract. It was found that as the concentration of the extract was increased both the free radical scavenging activity and ferric ion reducing power was also found to increase. LC-MS analysis confirmed the presence of eight different phenolic compounds in the methanolic extract which are possibly contributing to the antioxidant activity exhibited by the extract. It was also observed that liquorice treated HepG2 cells showed lower MDA and higher glutathione and catalase levels as compared to only H2O2 treated HepG2 cells where increased MDA production, decreased glutathione reductase and catalase production was observed.Conclusion: Our results thus conclude that, the methanolic extract of Glycyrrhiza glabra can be used as natural supplements in various disease conditions where oxidative stress has been reported. Â

    A unique influenza A (H5N1) virus causing a focal poultry outbreak in 2007 in Manipur, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A focal H5N1 outbreak in poultry was reported from Manipur, a north-eastern state, of India, in 2007. The aim of this study was to genetically characterize the Manipur isolate to understand the relationship with other H5N1 isolates and to trace the possible source of introduction of the virus into the country.</p> <p>Results</p> <p>Characterization of the complete genome revealed that the virus belonged to clade 2.2. It was distinctly different from viruses of the three EMA sublineages of clade 2.2 but related to isolates from wild migratory waterfowl from Russia, China and Mongolia. The HA gene, had the cleavage site GERRRRKR, earlier reported in whooper swan isolates from Mongolia in 2005. A stop codon at position 29 in the PB1-F2 protein could have implications on the replication efficiency. The acquisition of polymorphisms as seen in recent isolates of 2005–07 from distinct geographical regions suggests the possibility of transportation of H5N1 viruses through migratory birds.</p> <p>Conclusion</p> <p>Considering that all eight genes of the earlier Indian isolates belonged to the EMA3 sublineage and similar strains have not been reported from neighbouring countries of the subcontinent, it appears that the virus may have been introduced independently.</p

    Pandemic influenza A(H1N1) 2009 outbreak in a residential school at Panchgani, Maharashtra, India

    Get PDF
    Background &amp; objectives: An outbreak of influenza was investigated between June 24 and July 30, 2009 in a residential school at Panchgani, Maharashtra, India. The objectives were to determine the aetiology, study the clinical features in the affected individuals and, important epidemiological and environmental factors. The nature of public health response and effectiveness of the control measures were also evaluated. Methods: Real time reverse transcriptase polymerase chain reaction was performed on throat swabs collected from 82 suspected cases to determine the influenza types (A or B) and sub-types [pandemic (H1N1) 2009, as well as seasonal influenza H1N1, H3N2]. Haemagglutination inhibition assay was performed on serum samples collected from entire school population (N = 415) to detect antibodies for pandemic (H1N1) 2009, seasonal H1N1, H3N2 and influenza B/Yamagata and B/Victoria lineages. Antibody titres ≥ 10 for pandemic (H1N1) 2009 and ≥ 20 for seasonal influenza A and B were considered as positive for these viruses. Results: Clinical attack rate for influenza-like illness was 71.1 per cent (295/415). The attack rate for pandemic (H1N1) 2009 cases was 42.4 per cent (176/415). Throat swabs were collected from 82 cases, of which pandemic (H1N1) 2009 virus was detected in 15 (18.3%), influenza type A in (6) 7.4 per cent and influenza type B only in one case. A serosurvey carried out showed haemagglutination inhibition antibodies to pandemic (H1N1) 2009 in 52 per cent (216) subjects in the school and 9 per cent (22) in the community. Interpretation &amp; conclusion: Our findings confirmed an outbreak of pandemic (H1N1) 2009 due to local transmission among students in a residential school at Panchgani, Maharashtra, India

    Percent positivity and phylogenetic analysis of Mycoplasma gallisepticum and Mycoplasma synoviae in commercial poultry from the different States of India

    Get PDF
    Background and Aim: The Indian and global poultry industries suffer significant economic losses due to Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) infections, which adversely affect egg production, hatchability, weight gain, and feed efficiency in farms, thus decreasing the overall production efficiency. This study aimed to determine the percent positivity and phylogenetic analysis of MG, MS, and co-infection of both mycoplasmas in commercial poultry farms across different states of India from 2017 to 2021. Materials and Methods: A total of 3620 tracheal or choacal swabs were collected from breeder and layer farms showing clinical signs of avian mycoplasma infections from commercial poultry farms across India, and the percent positivites for MG, MS, and co-infection of both mycoplasmas were determined by Polymerase chain reaction using the 16S rRNA and vlhA genes amplification, respectively. Phylogenetic analysis was carried out by sequencing the mgc2 and vlhA genes of 2 samples of MG and 24 samples of M. synoviae to gain insight into the genetic variability of Indian strains. The data were then compared with other Indian strains, vaccines strains, and strains from other countries. Results: Our data shows the percent positivity of MG, MS, and co-infection of both MG and MS was 6.43%, 23.61%, and 15.49%, respectively. The phylogenetic relationship between MG and MS was determined using the vlhA and mgc2 genes, revealing two samples of MG and 24 samples of MS clustered with other Indian strains. M. synoviae MSM22 and previously studied M. synoviae MGS 482 clustered with vaccine strain M. synoviae MS-H. Conclusion: Mycoplasma synoviae infections in breeder, layer, and in both is predominant compared to MG across the states investigated in India. Sequenced samples of MG and MS showed evolutionary relationships with the previously studied Indian strains of MG and MS. These findings support our view that monitoring chickens for avian mycoplasma infections are of paramount significance. It further lends credence to the contention that such information will pave the way for the development of a home-grown vaccination control program and thus safeguard the poultry sector against mycoplasma infections

    An avian influenza A(H11N1) virus from a wild aquatic bird revealing a unique Eurasian-American genetic reassortment

    Get PDF
    Influenza surveillance in different wild bird populations is critical for understanding the persistence, transmission and evolution of these viruses. Avian influenza (AI) surveillance was undertaken in wild migratory and resident birds during the period 2007–2008, in view of the outbreaks of highly pathogenic AI (HPAI) H5N1 in poultry in India since 2006. In this study, we present the whole genome sequence data along with the genetic and virological characterization of an Influenza A(H11N1) virus isolated from wild aquatic bird for the first time from India. The virus was low pathogenicity and phylogenetic analysis revealed that it was distinct from reported H11N1 viruses. The hemagglutinin (HA) gene showed maximum similarity with A/semipalmatedsandpiper/Delaware/2109/2000 (H11N6) and A/shorebird/Delaware/236/2003(H11N9) while the neuraminidase (NA) gene showed maximum similarity with A/duck/Mongolia/540/2001(H1N1). The virus thus possessed an HA gene of the American lineage. The NA and other six genes were of the Eurasian lineage and showed closer relatedness to non-H11 viruses. Such a genetic reassortment is unique and interesting, though the pathways leading to its emergence and its future persistence in the avian reservoir is yet to be fully established

    Characterization of the Influenza A H5N1 Viruses of the 2008-09 Outbreaks in India Reveals a Third Introduction and Possible Endemicity

    Get PDF
    Widespread infection of highly pathogenic avian influenza A H5N1 was reported from backyard and commercial poultry in West Bengal (WB), an eastern state of India in early 2008. Infection gradually spread to Tripura, Assam and Sikkim, the northeastern states, with 70 outbreaks reported between January 2008 and May 2009. Whole genome sequence analysis of three isolates from WB, one isolate from Tripura along with the analysis of hemagglutinin (HA) and neuraminidase (NA) genes of 17 other isolates was performed during this study. In the HA gene phylogenetic tree, all the 2008-09 Indian isolates belonged to EMA3 sublineage of clade 2.2. The closest phylogenetic relationship was found to be with the 2007-09 isolates from Bangladesh and not with the earlier 2006 and 2007 Indian isolates implying a third introduction into the country. The receptor-binding pocket of HA1 of two isolates from WB showed S221P mutation, one of the markers predicted to be associated with human receptor specificity. Two substitutions E119A (2 isolates of WB) and N294S (2 other isolates of WB) known to confer resistance to NA inhibitors were observed in the active site of neuraminidase. Several additional mutations were observed within the 2008-09 Indian isolates indicating genetic diversification. Overall, the study is indicative of a possible endemicity in the eastern and northeastern parts of the country, demanding active surveillance specifically in view of the critical mutations that have been observed in the influenza A H5N1 viruses

    Seroepidemiology of pandemic influenza A (H1N1) 2009 virus infections in Pune, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In India, Pune was one of the badly affected cities during the influenza A (H1N1) 2009 pandemic. We undertook serosurveys among the risk groups and general population to determine the extent of pandemic influenza A (H1N1) 2009 virus infections.</p> <p>Methods</p> <p>Pre-pandemic sera from the archives, collected during January 2005 to March 2009, were assayed for the determination of baseline seropositivity. Serosurveys were undertaken among the risk groups such as hospital staff, general practitioners, school children and staff and general population between 15<sup>th </sup>August and 11<sup>th </sup>December 2009. In addition, the PCR-confirmed pandemic influenza A (H1N1) 2009 cases and their household contacts were also investigated. Haemagglutination-inhibition (HI) assays were performed using turkey red blood cells employing standard protocols. A titre of ≥1:40 was considered seropositive.</p> <p>Results</p> <p>Only 2 (0.9%) of the 222 pre-pandemic sera were positive. The test-retest reliability of HI assay in 101 sera was 98% for pandemic H1N1, 93.1% for seasonal H1N1 and 94% for seasonal H3N2. The sera from 48 (73.8%) of 65 PCR-confirmed pandemic H1N1 cases in 2009 were positive. Seropositivity among general practitioners increased from 4.9% in August to 9.4% in November and 15.1% in December. Among hospital staff, seropositivity increased from 2.8% in August to 12% in November. Seropositivity among the schools increased from 2% in August to 10.7% in September. The seropositivity among students (25%) was higher than the school staff in September. In a general population survey in October 2009, seropositivity was higher in children (9.1%) than adults (4.3%). The 15-19 years age group showed the highest seropositivity of 20.3%. Seropositivity of seasonal H3N2 (55.3%) and H1N1 (26.4%) was higher than pandemic H1N1 (5.7%) (n = 2328). In households of 74 PCR-confirmed pandemic H1N1 cases, 25.6% contacts were seropositive. Almost 90% pandemic H1N1 infections were asymptomatic or mild. Considering a titre cut off of 1:10, seropositivity was 1.5-3 times as compared to 1:40.</p> <p>Conclusions</p> <p>Pandemic influenza A (H1N1) 2009 virus infection was widespread in all sections of community. However, infection was significantly higher in school children and general practitioners. Hospital staff had the lowest infections suggesting the efficacy of infection-control measures.</p

    Isolation and characterization of Escherichia coli serotype O157:H7 and other verotoxin-producing E. coli in healthy Indian cattle

    Get PDF
    Background and Aim: Cattle are the main reservoir of Escherichia coli O157:H7 and other verotoxigenic E. coli (VTEC); therefore, there is an increased risk of infection to humans by either direct or indirect mode of transmissions. However, the prevalence of E. coli O157:H7 in the healthy cattle population of India is yet to be ascertained. This study aimed to screen the dairy cattle in and around Pune, Maharashtra, India, for verotoxin-producing E. coli O157:H7. Materials and Methods: A total of 257 rectal swabs were collected from 15 different organized and unorganized dairy farms of Pune during the period, January-March 2015. The screening involved enrichment in EC broth followed by differential identification on MacConkey sorbitol agar. The presumptive positive isolates were further confirmed by multiplex polymerase chain reaction (PCR) using primers specific to rfbE (O157), fliC (H7), VT1 (MK1), and VT2 (MK2). Vero-toxicity and antibiotic sensitivity were examined in PCR confirmed isolates. Results: Out of the 257 samples analyzed, 1.9% (2/105) were positive for O157:H7 and 39% (41/105) were positive for VTEC. Two PCR confirmed positive O157:H7 strains and two randomly selected PCR-positive VT strains exhibited in vitro cytopathic effect on Vero cells on day-7 post-inoculation. Antibiotic sensitivity profiling of O157:H7 strains exhibited resistance against penicillin G, kanamycin, ampicillin, tetracycline, gentamycin, cefotaxime, streptomycin, and piperacillin. Conclusion: These findings reveal the presence of pathogenic E. coli O157:H7 in the healthy cattle of Pune; in a situation, wherein regular surveillance for O157:H7 is not a norm. Therefore, the findings presented herein warrant routine surveillance and public awareness to prevent the transfer of such pathogens and manage health risks to the public

    Receptor specificity and erythrocyte binding preferences of avian influenza viruses isolated from India

    No full text
    Abstract Introduction Hemagglutination (HA) and hemagglutination inhibition (HI) assays are conventionally used for detection and identification of influenza viruses. HI assay is also used for detection of antibodies against influenza viruses. Primarily turkey or chicken erythrocytes [red blood cells (RBCs)] are used in these assays, as they are large, nucleated, and sediment fast, which makes it easy to determine the titer. Human influenza viruses agglutinate RBCs from chicken, human, and guinea pig, but not from horse. Human influenza viruses bind preferentially to sialic acid (SA) linked to galactose (Gal) by α 2, 6 linkage (SA α 2, 6-Gal), whereas avian influenza (AI) viruses bind preferentially to SA α 2, 3-Gal linkages. With this background, the present study was undertaken to study erythrocyte binding preferences and receptor specificities of AI viruses isolated from India. Materials and methods A total of nine AI virus isolates (four subtypes) from India and three reference AI strains (three subtypes) were tested in HA and HI assays against mammalian and avian erythrocytes. The erythrocytes from turkey, chicken, goose, guinea pig and horse were used in the study. The receptor specificity determination assays were performed using goose and turkey RBCs. The amino acids present at 190 helix, 130 and 220 loops of the receptor-binding domain of the hemagglutinin protein were analyzed to correlate amino acid changes with the receptor specificity. Results All tested highly pathogenic avian influenza (HPAI) H5N1 viruses reacted with all five types of RBCs in the HA assay; AI H9N2 and H5N2 viruses did not react with horse RBCs. For H5N1 viruses guinea pig and goose RBCs were best for both HA and HI assays. For H9N2 viruses, guinea pig, fowl and turkey RBCs were suitable. For other tested AI subtypes, avian and guinea pig RBCs were better. Eight isolates of H5N1, one H4N6 and one H7N1 virus showed preference to avian sialic acid receptors. Importantly, two isolates of HPAI H5N1, H9N2 and H11N1 viruses showed receptor specificity preference to both avian and mammalian sialic acid (α-2, 3 and α-2, 6) receptors. Conclusions Use of different types of RBCs resulted in titer variations in HA and HI assays. This showed that RBCs giving optimum HA and HI titers would increase sensitivity of detection and would be more appropriate for identification and antigenic analysis of AI viruses. Analysis of 16 amino acids in the receptor-binding domain of the hemagglutinin of HPAI H5N1 viruses revealed that the only variation observed was in S221P amino acid position. Two H5N1 viruses showed S221P amino acid change, out of which only one H5N1 virus showed preference to α 2, 6 sialic acid receptor. One H5N1 virus isolate with amino acid S at 221 position, showed preference to α 2,3 as well as α 2,6 sialic acid receptors. This indicated that factor(s) other than S221P mutation in the hemagglutinin are probably involved in determining receptor specificity of H5N1 viruses. This is the first report of receptor specificity and erythrocyte binding preferences of AI viruses from India.</p

    Effect of Encapsulated Ferrous Sulphate Fortified Salt on Hemoglobin Levels in Anemic Rats

    No full text
    (1) Background: Iron deficiency anemia is a significant nutritional problem all over the world. Salt formulations supplemented with encapsulated iron and iodine (double-fortified) were tested for their efficacy in managing iron deficiency anemia. In this study, we have checked the effect of these double-fortified salt formulations (iron and iodine) on hemoglobin (Hb) levels in anemic Wistar male rats. (2) Methods: The study was divided into two phases, viz., the development of anemia in the first phase and then the random division of anemic rats into five groups (Groups A to E). These rats were fed with three different salt formulations (Groups A to C); Group D was continued on a low iron diet, and Group E was on a normal pellet diet over a period of 84 days. The level of Hb was tested in each group. (3) Results: The rats in Groups A, B, C, and E recovered from anemia significantly, with higher Hb levels. On day 84, however, the Hb level in Group D continued to decrease. The bodyweight of the rats was not affected in any way. In all of the groups, histopathology examinations in various organs revealed no significant changes. (4) Conclusions: All of the three different salt formulations showed significant recovery in the anemic rats as compared to the rats fed with a normal pelleted diet
    corecore