6 research outputs found

    Giant Intrinsic Spin and Orbital Hall Effects in Sr2MO4 (M=Ru,Rh,Mo)

    Full text link
    We investigate the intrinsic spin Hall conductivity (SHC) and the d-orbital Hall conductivity (OHC) in metallic d-electron systems, by focusing on the t_{2g}-orbital tight-binding model for Sr2MO4 (M=Ru,Rh,Mo). The conductivities obtained are one or two orders of magnitude larger than predicted values for p-type semiconductors with 5% hole doping. The origin of these giant Hall effects is the ``effective Aharonov-Bohm phase'' that is induced by the d-atomic angular momentum in connection with the spin-orbit interaction and the inter-orbital hopping integrals. The huge SHC and OHC generated by this mechanism are expected to be ubiquitous in multiorbital transition metal complexes, which pens the possibility of realizing spintronics as well as orbitronics devices.Comment: 5 pages, accepted for publication in PR

    Giant Orbital Hall Effect in Transition Metals: Origin of Large Spin and Anomalous Hall Effects

    Full text link
    In transition metals and their compounds, the orbital degrees of freedom gives rise to an orbital current, in addition to the ordinary spin and charge currents. We reveal that considerably large spin and anomalous Hall effects (SHE and AHE) observed in transition metals originate from an orbital Hall effect (OHE). To elucidate the origin of these novel Hall effects, a simple periodic s-d hybridization model is proposed as a generic model. The giant positive OHE originates from the orbital Aharonov-Bohm phase factor, and induces spin Hall conductivity that is proportional to the spin-orbit polarization at the Fermi level, which is positive (negative) in metals with more than (less than) half-filling.Comment: 5 pages, to be published in Phys. Rev. Let

    Giant Extrinsic Spin Hall Effect due to Rare-Earth Impurities

    Full text link
    We investigate the extrinsic spin Hall effect in the electron gas model due to magnetic impurities, by focusing on Ce- and Yb-impurities. In the dilute limit, the skew scattering term dominates the side jump term. For Ce-impurities, the spin Hall angle αSH\alpha_{\rm SH} due to skew scattering is given by 8πsinδ2/7-8\pi\sin\delta_2/7, where δ2(1)\delta_2 (\ll 1) is the phase shift ford(l=2)d (l=2) partial wave. Since αSH\alpha_{\rm SH} reaches O(101)O(10^{-1}) if \delta_2 \simge 0.03, the spin Hall effect is anticipated to be considerable in metals with rare-earth impurities. The giant extrinsic SHE originates from the large orbital angular momentum, which is also significant for the intrinsic SHE.Comment: 5 pages, 3 figures, to be published in New Journal of Physic

    Study of Intrinsic Spin Hall Effect and Orbital Hall Effect in 4d- and 5d- Transition Metals

    Full text link
    We study the intrinsic spin Hall conductivity (SHC) in various 5d5d-transition metals (Ta, W, Re, Os, Ir, Pt, and Au) and 4d-transition metals (Nb, Mo, Tc, Ru, Rh, Pd, and Ag) based on the Naval Research Laboratory tight-binding model, which enables us to perform quantitatively reliable analysis. In each metal, the obtained intrinsic SHC is independent of resistivity in the low resistive regime (ρ<50μΩcm\rho < 50 \mu\Omega\text{cm}) whereas it decreases in proportion to ρ2\rho^{-2} in the high resistive regime. In the low resistive regime, the SHC takes a large positive value in Pt and Pd, both of which have approximately nine dd-electrons per ion (nd=9n_d=9). On the other hand, the SHC takes a large negative value in Ta, Nb, W, and Mo where nd<5n_d<5. In transition metals, a conduction electron acquires the trajectory-dependent phase factor that originates from the atomic wavefunction. This phase factor, which is reminiscent of the Aharonov-Bohm phase, is the origin of the SHC in paramagnetic metals and that of the anomalous Hall conductivity in ferromagnetic metals. Furthermore, each transition metal shows huge and positive dd-orbital Hall conductivity (OHC), independently of the strength of the spin-orbit interaction (SOI). Since the OHC is much larger than the SHC, it will be possible to realize a {\it orbitronics device} made of transition metals.Comment: 17 pages, 12 figures, 3 tables, resubmitted to Physical Review

    Anomalous Transport Phenomena in Fermi Liquids with Strong Magnetic Fluctuations

    Full text link
    In many strongly correlated electron systems, remarkable violation of the relaxation time approximation (RTA) is observed. The most famous example would be high-Tc superconductors (HTSCs), and similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). Here, we develop a transport theory involving resistivity and Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the current vertex correction (CVC). In nearly AF Fermi liquids, the CVC accounts for the significant enhancements in the Hall coefficient, magnetoresistance, thermoelectric power, and Nernst coefficient in nearly AF metals. According to the numerical study, aspects of anomalous transport phenomena in HTSC are explained in a unified way by considering the CVC, without introducing any fitting parameters; this strongly supports the idea that HTSCs are Fermi liquids with strong AF fluctuations. In addition, the striking \omega-dependence of the AC Hall coefficient and the remarkable effects of impurities on the transport coefficients in HTSCs appear to fit naturally into the present theory. The present theory also explains very similar anomalous transport phenomena occurring in CeCoIn5 and CeRhIn5, which is a heavy-fermion system near the AF QCP, and in the organic superconductor \kappa-(BEDT-TTF).Comment: 100 pages, Rep. Prog. Phys. 71, 026501 (2008
    corecore