37 research outputs found
Mapping the Neural Substrates of Recent and Remote Visual Imprinting Memory in the Chick Brain
Social attachment formed by filial imprinting in newborn chicks undergoes a process of memory consolidation that involves rearrangement of its neural storage substrates. In the first 3 h after imprinting it depends on the integrity of the intermediate medial mesopallium (IMM) and beyond that time on unidentified memory storage structures dubbed S’. To search for the S’ memory system in the chick brain, we mapped and compared patterns of activity induced by retrieval of filial attachment memory before and after this critical transition. Chicks were trained in the visual imprinting task, and their memory was reactivated by imprinting stimulus either 1 h (recent memory retrieval) or 24 h (remote memory retrieval) after the completion of training. Patterns of brain activity were mapped by in situ hybridization to mRNA of an immediate early gene c-fos. We also mapped c-fos expression induced by the first presentation of the imprinting stimulus. Memory retrieval triggered massive c-fos expression in the chick brain both 1 and 24 h after the end of training. These activity patterns mostly coincided with the c-fos expression induced by the first presentation of imprinting stimulus. However, in the hippocampus c-fos induction was observed only after the first exposure to imprinting stimulus but not after memory retrieval. In the IMM, medio-rostral nidopallium/mesopallium, and hyperpallium densocellulare c-fos activation was induced by retrieval of only the remote but not of the recent memory. These c-fos mapping data point to the candidate brain structures for systems reorganization of imprinting memory in chicks
Radiation Induces Distinct Changes in Defined Subpopulations of Neural Stem and Progenitor Cells in the Adult Hippocampus
While irradiation can effectively treat brain tumors, this therapy also causes cognitive impairments, some of which may stem from the disruption of hippocampal neurogenesis. To study how radiation affects neurogenesis, we combine phenotyping of subpopulations of hippocampal neural stem and progenitor cells with double- and triple S-phase labeling paradigms. Using this approach, we reveal new features of division, survival, and differentiation of neural stem and progenitor cells after exposure to gamma radiation. We show that dividing neural stem cells, while susceptible to damage induced by gamma rays, are less vulnerable than their rapidly amplifying progeny. We also show that dividing stem and progenitor cells that survive irradiation are suppressed in their ability to replicate 0.5–1 day after the radiation exposure. Suppression of division is also observed for cells that entered the cell cycle after irradiation or were not in the S phase at the time of exposure. Determining the longer term effects of irradiation, we found that 2 months after exposure, radiation-induced suppression of division is partially relieved for both stem and progenitor cells, without evidence for compensatory symmetric divisions as a means to restore the normal level of neurogenesis. By that time, most mature young neurons, born 2–4 weeks after the irradiation, still bear the consequences of radiation exposure, unlike younger neurons undergoing early stages of differentiation without overt signs of deficient maturation. Later, 6 months after an exposure to 5 Gy, cell proliferation and neurogenesis are further impaired, though neural stem cells are still available in the niche, and their pool is preserved. Our results indicate that various subpopulations of stem and progenitor cells in the adult hippocampus have different susceptibility to gamma radiation, and that neurogenesis, even after a temporary restoration, is impaired in the long term after exposure to gamma rays. Our study provides a framework for investigating critical issues of neural stem cell maintenance, aging, interaction with their microenvironment, and post-irradiation therapy
Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film
Artificial synapses utilizing spike signals are essential elements of new generation brain-inspired computers. In this paper, we realize light-stimulated adaptive artificial synapse based on nanocrystalline zinc oxide film. The artificial synapse photoconductivity shows spike-type signal response, long and short-term memory (LTM and STM), STM-to-LTM transition and paired-pulse facilitation. It is also retaining the memory of previous exposures and demonstrates spike-frequency adaptation properties. A way to implement neurons with synaptic depression, tonic excitation, and delayed accelerating types of response under the influence of repetitive light signals is discussed. The developed artificial synapse is able to become a key element of neuromorphic chips and neuromorphic sensorics systems
The mRubyFT Protein, Genetically Encoded Blue-to-Red Fluorescent Timer.
peer reviewedGenetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms of mFTs are 2-3- and 5-7-fold dimmer compared to the brightness of the enhanced green fluorescent protein (EGFP). To address this limitation, we developed a blue-to-red fluorescent timer, named mRubyFT, derived from the bright mRuby2 red fluorescent protein. The blue form of mRubyFT reached its maximum at 5.7 h and completely transformed into the red form that had a maturation half-time of 15 h. Blue and red forms of purified mRubyFT were 4.1-fold brighter and 1.3-fold dimmer than the respective forms of the mCherry-derived Fast-FT timer in vitro. When expressed in mammalian cells, both forms of mRubyFT were 1.3-fold brighter than the respective forms of Fast-FT. The violet light-induced blue-to-red photoconversion was 4.2-fold less efficient in the case of mRubyFT timer compared to the same photoconversion of the Fast-FT timer. The timer behavior of mRubyFT was confirmed in mammalian cells. The monomeric properties of mRubyFT allowed the labeling and confocal imaging of cytoskeleton proteins in live mammalian cells. The X-ray structure of the red form of mRubyFT at 1.5 Å resolution was obtained and analyzed. The role of the residues from the chromophore surrounding was studied using site-directed mutagenesis
Recommended from our members
Reminder effects – reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks
It is generally accepted that memory formation involves an irreversible passage via labile phases to the stable form of 'long-term memory' impervious to amnestic agents such as protein synthesis inhibitors. However, recent experiments demonstrate that reactivation of memory by way of a reminder renders it labile to such inhibitors, suggesting that such retrieval is followed by a so-called reconsolidation process similar or identical in its cellular and molecular correlates to that occurring during the initial consolidation. We compared the effects of the protein synthesis inhibitor anisomycin and the glycoprotein synthesis inhibitor 2-deoxygalactose on the temporal dynamics and pharmacological sensitivity of initial consolidation and memory expression following a reminder in a one-trial passive-avoidance task in day-old chicks. This comparison revealed three differences between the action of the inhibitors on newly formed compared with reactivated memory. First, the recall deficit after the reminder was temporary, whilst the amnesia following inhibitor treatment during training was stable. Second, the sensitive period for the effect of anisomycin was shorter in the reminder than in the training situation. Third, the effective dose for either inhibitor for reminder-associated amnesia was several times lower than for amnesia developing after training. Thus though like initial consolidation, memory expression at delayed periods following reminder depends on protein and glycoprotein synthesis, the differences between the temporal and pharmacological dynamics in the two situations point to the distinct character of the molecular processes involved in postreminder effects
Inhibition of Protein Synthesis Attenuates Formation of Traumatic Memory and Normalizes Fear-Induced c-Fos Expression in a Mouse Model of Posttraumatic Stress Disorder
Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention
Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome
A variety of genetically encoded calcium indicators are currently available for visualization of calcium dynamics in cultured cells and in vivo. Only one of them, called NIR-GECO1, exhibits fluorescence in the near-infrared region of the spectrum. NIR-GECO1 is engineered based on the near-infrared fluorescent protein mIFP derived from bacterial phytochromes. However, NIR-GECO1 has an inverted response to calcium ions and its excitation spectrum is not optimal for the commonly used 640 nm lasers. Using small near-infrared bacterial phytochrome GAF-FP and calmodulin/M13-peptide pair, we developed a near-infrared calcium indicator called GAF-CaMP2. In vitro, GAF-CaMP2 showed a positive response of 78% and high affinity (Kd of 466 nM) to the calcium ions. It had excitation and emission maxima at 642 and 674 nm, respectively. GAF-CaMP2 had a 2.0-fold lower brightness, 5.5-fold faster maturation and lower pH stability compared to GAF-FP in vitro. GAF-CaMP2 showed 2.9-fold higher photostability than smURFP protein. The GAF-CaMP2 fusion with sfGFP demonstrated a ratiometric response with a dynamic range of 169% when expressed in the cytosol of mammalian cells in culture. Finally, we successfully applied the ratiometric version of GAF-CaMP2 for the simultaneous visualization of calcium transients in three organelles of mammalian cells using four-color fluorescence microscopy
DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D
Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software