110 research outputs found
The localization of NADPH oxidase and reactive oxygen species in in vitro-cultured Mesembryanthemum crystallinum L. hypocotyls discloses their differing roles in rhizogenesis
This work demonstrated how reactive oxygen species (ROS) are involved in the regulation of rhizogenesis from hypocotyls of Mesembryanthemum crystallinum L. cultured on a medium containing 1-naphthaleneacetic acid (NAA). The increase of NADPH oxidase activity was correlated with an increase of hydrogen peroxide (H2O2) content and induction of mitotic activity in vascular cylinder cells, leading to root formation from cultured hypocotyls. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, inhibited H2O2 production and blocked rhizogenesis. Ultrastructural studies revealed differences in H2O2 localization between the vascular cylinder cells and cortex parenchyma cells of cultured explants. We suggest that NADPH oxidase is responsible for H2O2 level regulation in vascular cylinder cells, while peroxidase (POD) participates in H2O2 level regulation in cortex cells. Blue formazan (NBT) precipitates indicating superoxide radical (O2 •−) accumulation were localized within the vascular cylinder cells during the early stages of rhizogenesis and at the tip of root primordia, as well as in the distal and middle parts of newly formed organs. 3,3′-diaminobenzidine (DAB) staining of H2O2 was more intense in vascular bundle cells and in cortex cells. In newly formed roots, H2O2 was localized in vascular tissue. Adding DPI to the medium led to a decrease in the intensity of NBT and DAB staining in cultured explants. Accumulation of O2 •− was then limited to epidermis cells, while H2O2 was accumulated only in vascular tissue. These results indicate that O2 •− is engaged in processes of rhizogenesis induction involving division of competent cells, while H2O2 is engaged in developmental processes mainly involving cell growth
Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana
Volatile organic compounds have been reported to serve some important roles in plant communication with other organisms, but little is known about the biological functions of most of these substances. To gain insight into this problem, we have compared differences in floral and vegetative volatiles between two closely related plant species with different life histories. The self-pollinating annual, Arabidopsis thaliana, and its relative, the outcrossing perennial, Arabidopsis lyrata, have markedly divergent life cycles and breeding systems. We show that these differences are in part reflected in the formation of distinct volatile mixtures in flowers and foliage. Volatiles emitted from flowers of a German A. lyrata ssp. petraea population are dominated by benzenoid compounds in contrast to the previously described sesquiterpene-dominated emissions of A. thaliana flowers. Flowers of A. lyrata ssp. petraea release benzenoid volatiles in a diurnal rhythm with highest emission rates at midday coinciding with observed visitations of pollinating insects. Insect feeding on leaves of A. lyrata ssp. petraea causes a variable release of the volatiles methyl salicylate, C11- and C16-homoterpenes, nerolidol, plus the sesquiterpene (E)-β-caryophyllene, which in A. thaliana is emitted exclusively from flowers. An insect-induced gene (AlCarS) with high sequence similarity to the florally expressed (E)-β-caryophyllene synthase (AtTPS21) from A. thaliana was identified from individuals of a German A. lyrata ssp. petraea population. Recombinant AlCarS converts the sesquiterpene precursor, farnesyl diphosphate, into (E)-β-caryophyllene with α-humulene and α-copaene as minor products indicating its close functional relationship to the A. thaliana AtTPS21. Differential regulation of these genes in flowers and foliage is consistent with the different functions of volatiles in the two Arabidopsis species
Microwave assisted solvent free synthesis of 1,3-diphenylpropenones
<p>Abstract</p> <p>Background</p> <p>1,3-Diphenylpropenones (chalcones) are well known for their diverse array of bioactivities. Hydroxyl group substituted chalcones are the main precursor in the synthesis of flavonoids. Till date various methods have been developed for the synthesis of these very interesting molecules. Continuing our efforts for the development of simple, eco-friendly and cost-effective methodologies, we report here a solvent free condensation of aryl ketones and aldehydes using iodine impregnated alumina under microwave activation. This new protocol has been applied to a variety of substituted aryl carbonyls with excellent yield of substituted 1,3-diphenylpropenones.</p> <p>Results</p> <p>Differently substituted chalcones were synthesized using iodine impregnated neutral alumina as catalyst in 79-95% yield in less than 2 minutes time under microwave activation without using any solvent. The reaction was studied under different catalytic conditions and it was found that molecular iodine supported over neutral alumina gives the best yield. The otherwise difficult single step condensation of hydroxy substituted aryl carbonyls is an attractive feature of this protocol to obtain polyhydroxychalcones in excellent yields. In order to find out the general applicability of this new endeavor it was successfully applied for the synthesis of 15 different chalcones including highly bioactive prenylated hydroxychalcone xanthohumol.</p> <p>Conclusion</p> <p>A new, simple and solvent free method was developed for the synthesis of substituted chalcones in environmentally benign way. The mild reaction conditions, easy work-up, clean reaction profiles render this approach as an interesting alternative to the existing methods.</p
Activation of mGlu3 Receptors Stimulates the Production of GDNF in Striatal Neurons
Metabotropic glutamate (mGlu) receptors have been considered potential targets
for the therapy of experimental parkinsonism. One hypothetical advantage
associated with the use of mGlu receptor ligands is the lack of the adverse
effects typically induced by ionotropic glutamate receptor antagonists, such as
sedation, ataxia, and severe learning impairment. Low doses of the mGlu2/3
metabotropic glutamate receptor agonist, LY379268 (0.25–3 mg/kg, i.p.)
increased glial cell line-derived neurotrophic factor (GDNF) mRNA and protein
levels in the mouse brain, as assessed by in situ
hybridization, real-time PCR, immunoblotting, and immunohistochemistry. This
increase was prominent in the striatum, but was also observed in the cerebral
cortex. GDNF mRNA levels peaked at 3 h and declined afterwards, whereas GDNF
protein levels progressively increased from 24 to 72 h following LY379268
injection. The action of LY379268 was abrogated by the mGlu2/3 receptor
antagonist, LY341495 (1 mg/kg, i.p.), and was lost in mGlu3 receptor knockout
mice, but not in mGlu2 receptor knockout mice. In pure cultures of striatal
neurons, the increase in GDNF induced by LY379268 required the activation of the
mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways, as
shown by the use of specific inhibitors of the two pathways. Both in
vivo and in vitro studies led to the conclusion
that neurons were the only source of GDNF in response to mGlu3 receptor
activation. Remarkably, acute or repeated injections of LY379268 at doses that
enhanced striatal GDNF levels (0.25 or 3 mg/kg, i.p.) were highly protective
against nigro-striatal damage induced by
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice, as assessed by
stereological counting of tyrosine hydroxylase-positive neurons in the pars
compacta of the substantia nigra. We speculate that selective mGlu3 receptor
agonists or enhancers are potential candidates as neuroprotective agents in
Parkinson's disease, and their use might circumvent the limitations
associated with the administration of exogenous GDNF
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
- …