426 research outputs found
Recommended from our members
Dynamics of ABC Transporter P-glycoprotein in Three Conformational States.
We used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to obtain a comprehensive view of transporter dynamics (85.8% sequence coverage) occurring throughout the multidrug efflux transporter P-glycoprotein (P-gp) in three distinct conformational states: predominantly inward-facing apo P-gp, pre-hydrolytic (E552Q/E1197Q) P-gp bound to Mg+2-ATP, and outward-facing P-gp bound to Mg+2-ADP-VO4-3. Nucleotide affinity was measured with bio-layer interferometry (BLI), which yielded kinetics data that fit a two Mg+2-ATP binding-site model. This model has one high affinity site (3.2 ± 0.3 µM) and one low affinity site (209 ± 25 µM). Comparison of deuterium incorporation profiles revealed asymmetry between the changes undergone at the critical interfaces where nucleotide binding domains (NBDs) contact intracellular helices (ICHs). In the pre-hydrolytic state, both interfaces between ICHs and NBDs decreased exchange to similar extents relative to inward-facing P-gp. In the outward-facing state, the ICH-NBD1 interface showed decreased exchange, while the ICH-NBD2 interface showed less of an effect. The extracellular loops (ECLs) showed reduced deuterium uptake in the pre-hydrolytic state, consistent with an occluded conformation. While in the outward-facing state, increased ECL exchange corresponding to EC domain opening was observed. These findings point toward asymmetry between both NBDs, and they suggest that pre-hydrolytic P-gp occupies an occluded conformation
Frustration in Biomolecules
Biomolecules are the prime information processing elements of living matter.
Most of these inanimate systems are polymers that compute their structures and
dynamics using as input seemingly random character strings of their sequence,
following which they coalesce and perform integrated cellular functions. In
large computational systems with a finite interaction-codes, the appearance of
conflicting goals is inevitable. Simple conflicting forces can lead to quite
complex structures and behaviors, leading to the concept of "frustration" in
condensed matter. We present here some basic ideas about frustration in
biomolecules and how the frustration concept leads to a better appreciation of
many aspects of the architecture of biomolecules, and how structure connects to
function. These ideas are simultaneously both seductively simple and perilously
subtle to grasp completely. The energy landscape theory of protein folding
provides a framework for quantifying frustration in large systems and has been
implemented at many levels of description. We first review the notion of
frustration from the areas of abstract logic and its uses in simple condensed
matter systems. We discuss then how the frustration concept applies
specifically to heteropolymers, testing folding landscape theory in computer
simulations of protein models and in experimentally accessible systems.
Studying the aspects of frustration averaged over many proteins provides ways
to infer energy functions useful for reliable structure prediction. We discuss
how frustration affects folding, how a large part of the biological functions
of proteins are related to subtle local frustration effects and how frustration
influences the appearance of metastable states, the nature of binding
processes, catalysis and allosteric transitions. We hope to illustrate how
Frustration is a fundamental concept in relating function to structural
biology.Comment: 97 pages, 30 figure
Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2.
The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13
Probing the Pro- and Anti-Coagulant Interactions of Thrombin
Integration has become both a key policy objective related to the resettlement of refugees and other migrants, and a matter of significant public discussion. Coherent policy development and productive public debate are, however, both threatened by the fact that the concept of integration is used with widely differing meanings. Based on review of attempted definitions of the term, related literature and primary fieldwork in settings of refugee settlement in the UK, the paper identifies elements central to perceptions of what constitutes 'successful' integration. Key domains of integration are proposed related to four overall themes: achievement and access across the sectors of employment, housing, education and health; assumptions and practice regarding citizenship and rights; processes of social connection within and between groups within the community; and structural barriers to such connection related to language, culture and the local environment. A framework linking these domains is presented as a tool to foster debate and definition regarding normative conceptions of integration in resettlement settings. The Author [2008]. Published by Oxford University Press. All rights reserved.sch_iih21pub75
Enhanced conformational space sampling improves the prediction of chemical shifts in proteins.
A biased-potential molecular dynamics simulation method, accelerated molecular dynamics (AMD), was combined with the chemical shift prediction algorithm SHIFTX to calculate (1)H(N), (15)N, (13)Calpha, (13)Cbeta, and (13)C' chemical shifts of the ankyrin repeat protein IkappaBalpha (residues 67-206), the primary inhibitor of nuclear factor kappa-B (NF-kappaB). Free-energy-weighted molecular ensembles were generated over a range of acceleration levels, affording systematic enhancement of the conformational space sampling of the protein. We have found that the predicted chemical shifts, particularly for the (15)N, (13)Calpha, and (13)Cbeta nuclei, improve substantially with enhanced conformational space sampling up to an optimal acceleration level. Significant improvement in the predicted chemical shift data coincides with those regions of the protein that exhibit backbone dynamics on longer time scales. Interestingly, the optimal acceleration level for reproduction of the chemical shift data has previously been shown to best reproduce the experimental residual dipolar coupling (RDC) data for this system, as both chemical shift data and RDCs report on an ensemble and time average in the millisecond range
Functional dynamics of the folded ankyrin repeats of I kappa B alpha revealed by nuclear magnetic resonance.
Inhibition of nuclear factor kappaB (NF-kappaB) is mainly accomplished by IkappaB alpha, which consists of a signal response sequence at the N-terminus, a six-ankyrin repeat domain (ARD) that binds NF-kappaB, and a C-terminal PEST sequence. Previous studies with the ARD revealed that the fifth and sixth repeats are only partially folded in the absence of NF-kappaB. Here we report NMR studies of a truncated version of IkappaB alpha, containing only the first four ankyrin repeats, IkappaB alpha(67-206). This four-repeat segment is well-structured in the free state, enabling full resonance assignments to be made. H-D exchange, backbone dynamics, and residual dipolar coupling (RDC) experiments reveal regions of flexibility. In addition, regions consistent with the presence of micro- to millisecond motions occur periodically throughout the repeat structure. Comparison of the RDCs with the crystal structure gave only moderate agreement, but an ensemble of structures generated by accelerated molecular dynamics gave much better agreement with the measured RDCs. The regions showing flexibility correspond to those implicated in entropic compensation for the loss of flexibility in ankyrin repeats 5 and 6 upon binding to NF-kappaB. The regions showing micro- to millisecond motions in the free protein are the ends of the beta-hairpins that directly interact with NF-kappaB in the complex
Mortar Board: A Century of Scholars, Chosen for Leadership, United to Serve
Mortar Board National College Senior Honor Society has a unique place in the history of higher education and indeed in the history of the United States. Founded in 1918, with inaugural chapters at Cornell University, University of Michigan, The Ohio State University, and Swarthmore College, Mortar Board was the first national organization to honor senior college women. Before women had the right to vote in the United States, Mortar Board members were leading their society to prominence across the country. In a real sense, Mortar Board grew up with the US higher education system and grew in step with women’s emergence as recognized leaders nationally. As a result, the history of Mortar Board members and their accomplishments provides readers with a unique window into women’s issues on campuses during the twentieth century, the importance of college student organizations to the quality of student life, and the effect of world events on American college students. Accepting men into its ranks since 1975, Mortar Board has grown into a comprehensive national college senior honor society comprised of students who exemplify Mortar Board’s founding Ideals of scholarship, leadership, and service. In preparation for its centennial, volunteers poured over fifty thousand photos, memos, and files to prepare its first-ever history. The result is a beautifully accurate, sometimes humorous, and always enlightening portrayal of college life in the United States over the last one hundred years.https://docs.lib.purdue.edu/purduepress_previews/1012/thumbnail.jp
- …