12 research outputs found

    Robust and Secure Watermarking Using Sparse Information of Watermark for Biometric Data Protection

    Get PDF
    Biometric based human authentication system is used for security purpose in many organizations in the present world. This biometric authentication system has several vulnerable points. Two of vulnerable points are protection of biometric templates at system database and protection of biometric templates at communication channel between two modules of biometric authentication systems. In this paper proposed a robust watermarking scheme using the sparse information of watermark biometric to secure vulnerable point like protection of biometric templates at the communication channel of biometric authentication systems. A compressive sensing theory procedure is used for generation of sparse information on watermark biometric data using detail wavelet coefficients. Then sparse information of watermark biometric data is embedded into DCT coefficients of host biometric data. This proposed scheme is robust to common signal processing and geometric attacks like JPEG compression, adding noise, filtering, and cropping, histogram equalization. This proposed scheme has more advantages and high quality measures compared to existing schemes in the literature

    (Z)-3-Methyl-4-[1-(4-methylanilino)propylidene]-1-phenyl-1H-pyrazol-5(4H)-one

    Get PDF
    In the title molecule, C20H21N3O, the central pyrazole ring forms dihedral angles of 4.75 (9) and 49.11 (9)°, respectively, with the phenyl and methyl-substituted benzene rings. The dihedral angle between the phenyl and benzene rings is 51.76 (8)°. The amino group and carbonyl O atom are involved in an intramolecular N—H...O hydrogen bond. In the crystal, π–π interactions are observed between benzene rings [centroid–centroid seperation = 3.892 (2) Å] and pyrazole rings [centroid–centroid seperation = 3.626 (2) Å], forming chains along [111]. The H atoms of the methyl group on the p-tolyl substituent were refined as disordered over two sets of sites in a 0.60 (4):0.40 (4) ratio

    Regorafenib and Ruthenium Complex Combination Inhibit Cancer Cell Growth by Targeting PI3K/AKT/ERK Signalling in Colorectal Cancer Cells

    No full text
    Cancer is one of the leading cause of lethality worldwide, CRC being the third most common cancer reported worldwide, with 1.85 million cases and 850,000 deaths annually. As in all other cancers, kinases are one of the major enzymes that play an essential role in the incidence and progression of CRC. Thus, using multi-kinase inhibitors is one of the therapeutic strategies used to counter advanced-stage CRC. Regorafenib is an FDA-approved drug in the third-line therapy of refractory metastatic colorectal cancer. Acquired resistance to cancers and higher toxicity of these drugs are disadvantages to the patients. To counter this, combination therapy is used as a strategy where a minimal dose of drugs can be used to get a higher efficacy and reduce drug resistance development. Ruthenium-based compounds are observed to be a potential alternative to platinum-based drugs due to their significant safety and effectiveness. Formerly, our lab reported Ru-1, a ruthenium-based compound, for its anticancer activity against multiple cancer cells, such as HepG2, HCT116, and MCF7. This study evaluates Ru-1′s activity against regorafenib-resistant HCT116 cells and as a combination therapeutic with regorafenib. Meanwhile, the mechanism of the effect of Ru-1 alone and with regorafenib as a combination is still unknown. In this study, we tested a drug combination (Ru-1 and regorafenib) against a panel of HT29, HCT116, and regorafenib-resistant HCT116 cells. The combination showed a synergistic inhibitory activity. Several mechanisms underlying these numerous synergistic activities, such as anti-proliferative efficacy, indicated that the combination exhibited potent cytotoxicity and enhanced apoptosis induction. Disruption of mitochondrial membrane potential increased intracellular ROS levels and decreased migratory cell properties were observed. The combination exhibited its activity by regulating PI3K/Akt and p38 MAP kinase signalling. This indicates that the combination of REG/Ru-1 targets cancer cells by modulating the PI3K/Akt and ERK signalling

    (Z)-3-Methyl-1-phenyl-4-[(p-tolyl)(p-tolylamino)methylidene]-1H-pyrazol-5(4H)-one

    Get PDF
    In the title molecule, C25H23N3O2, the pyrazole ring forms dihedral angles of 28.56 (7), 80.35 (7) and 31.99 (7)° with the phenyl ring, the p-tolyl ring and the p-tolylamino ring, respectively. The N—H group attached to the exocyclic C=C bond is in a syn arrangement with respect to the C=O bond of the pyrazolone group and an intramolecular N—H...O hydrogen bond is observed. In the crystal, weak C—H...π interactions link molecules along [100]

    ( Z

    No full text

    ( Z

    No full text

    Copper(II) tetrazolato complexes: Role in oxidation catalysis and protein binding

    No full text
    Three new coordination complexes [Cu-2(phen)(2)(ptz)(4)] (1), [Cu(phen)(pmtz)(2)] (2) and [Cu(phen)(pytz)(2)] (3) (ptz = 5-phenyltetrazolate, pmtz = 5-(2-pyrimidyl)tetrazolate and pytz = 5-(2-pyridyl)tetrazolate) have been synthesized using metal mediated [2+3] cycloaddition reaction between copper bound azide polymer and different organonitriles. All complexes have been structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Complex 1 shows a dinuclear structure via bridging ptz, while 2 and 3 reveal mononuclear structures. These complexes were explored as homogeneous catalysts for the selective peroxidative (with tBuOOH) oxidation of cyclohexane to cyclohexanol and cyclohexanone (KA oil) under very mild and green (solvent-and additive-free) conditions using microwave irradiation. The catecholase-like activity of the synthesized Cu(II) complexes was investigated by employing 3,5-di-tert-butylcatechol (DTBC) as a convenient model substrate, which showed first order kinetics with respect to the substrate in the oxidation of 3,5-di-tert-butyl catechol (DTBC) to 3,5-di-tertbutyl benzoquinone (DTBQ). Further, the interaction of synthesized Cu(II)-tetrazolato complexes with bovine serum albumin (BSA) was studied experimentally as well as through molecular docking to obtain detailed binding information of the Cu(II) complexes with BSA, which revealed higher binding of complex 1 than 2 and 3info:eu-repo/semantics/publishedVersio
    corecore