1,376 research outputs found

    Planet Formation: Statistics of spin rates and obliquities of extrasolar planets

    Get PDF
    We develop a simple model of planetary formation, focusing our attention on those planets with masses less than 10 Earth masses and studying particularly the primordial spin parameters of planets resulting from the accretion of planetesimals and produced by the collisions between the embryos. As initial conditions, we adopt the oligarchic growth regime of protoplanets in a disc where several embryos are allowed to form. We take different initial planetary system parameters and for each initial condition, we consider an evolution of 20 millon of years of the system. We perform simulations for 1000 different discs, and from their results we derive the statistical properties of the assembled planets. We have taken special attention to the planetary obliquities and rotation periods, such as the information obtained from the mass and semi major axis diagram, which reflects the process of planetary formation. The distribution of obliquities was found to be isotropic, which means that planets can rotate in direct or indirect sense, regardless of their mass. Our results regarding the primordial rotation periods show that they are dependent on the region where the embryo was formed and evolved. According to our results, most of the planets have rotation periods between 10 and 10000 hours and there are also a large population of planets similar to terrestrial planets in the Solar System.Comment: 10 pages, 16 figures, accepted for publication in MNRA

    Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration

    Get PDF
    The technique of guided tissue regeneration (GTR) has evolved over recent years in an attempt to achieve periodontal tissue regeneration by the use of a barrier membrane. However, there are significant limitations in the currently available membranes and overall outcomes may be limited. A degradable composite material was investigated as a potential GTR membrane material. Polylactic acid (PLA) and nanohydroxyapatite (nHA) composite was analysed, its bioactive potential and suitability as a carrier system for growth factors were assessed. The effect of nHA concentrations and the addition of platelet derived growth factor (PDGF) on osteoblast proliferation and differentiation was investigated. The bioactivity was dependent on the nHA concentration in the films, with more apatite deposited on films containing higher nHA content. Osteoblasts proliferated well on samples containing low nHA content and differentiated on films with higher nHA content. The composite films were able to deliver PDGF and cell proliferation increased on samples that were pre absorbed with the growth factor. nHA–PLA composite films are able to deliver active PDGF. In addition the bioactivity and cell differentiation was higher on films containing more nHA. The use of a nHA–PLA composite material containing a high concentration of nHA may be a useful material for GTR membrane as it will not only act as a barrier, but may also be able to enhance bone regeneration by delivery of biologically active molecules

    Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments

    Get PDF
    The flow properties of confined vortex matter driven through disordered mesoscopic channels are investigated by mode locking (ML) experiments. The observed ML effects allow to trace the evolution of both the structure and the number of confined rows and their match to the channel width as function of magnetic field. From a detailed analysis of the ML behavior for the case of 3-rows we obtain ({\it i}) the pinning frequency fpf_p, ({\it ii}) the onset frequency fcf_c for ML (\propto ordering velocity) and ({\it iii}) the fraction LML/LL_{ML}/L of coherently moving 3-row regions in the channel. The field dependence of these quantities shows that, at matching, where LMLL_{ML} is maximum, the pinning strength is small and the ordering velocity is low, while at mismatch, where LMLL_{ML} is small, both the pinning force and the ordering velocity are enhanced. Further, we find that fcfp2f_c \propto f_p^2, consistent with the dynamic ordering theory of Koshelev and Vinokur. The microscopic nature of the flow and the ordering phenomena will also be discussed.Comment: 10 pages, 7 figure, submitted to PRB. Discussion has been improved and a figure has been adde

    Planetary embryos and planetesimals residing in thin debris disks

    Full text link
    We consider constraints on the planetesimal population residing in the disks of AU Microscopii, Beta Pictoris and Fomalhaut taking into account their observed thicknesses and normal disk opacities. We estimate that bodies of radius 5, 180 and 70 km are responsible for initiating the collisional cascade accounting for the dust production for AU-Mic, Beta-Pic and Fomalhaut's disks, respectively, at break radii from the star where their surface brightness profiles change slope. Larger bodies, of radius 1000km and with surface density of order 0.01 g/cm^2, are required to explain the thickness of these disks assuming that they are heated by gravitational stirring. A comparison between the densities of the two sizes suggests the size distribution in the largest bodies is flatter than that observed in the Kuiper belt. AU Mic's disk requires the shallowest size distribution for bodies with radius greater than 10km suggesting that the disk contains planetary embryos experiencing a stage of runaway growth.Comment: submitted to MNRA

    A Substellar Companion to the Intermediate-Mass Giant 11 Com

    Full text link
    We report the detection of a substellar companion orbiting the intermediate-mass giant star 11 Com (G8 III). Precise Doppler measurements of the star from Xinglong station and Okayama Astrophysical Observatory (OAO) revealed Keplerian velocity variations with an orbital period of 326.03 +/- 0.32 days, a semiamplitude of 302.8 +/- 2.6 m/s, and an eccentricity of 0.231 +/- 0.005. Adopting a stellar mass of 2.7 +/- 0.3 M_solar, the minimum mass of the companion is 19.4 +/- 1.5 M_Jup, well above the deuterium burning limit, and the semimajor axis is 1.29 +/- 0.05 AU. This is the first result from the joint planet search program between China and Japan aiming at revealing statistics of substellar companions around intermediate-mass giants. 11 Com b emerged from 300 targets of the planet search program at OAO. The current detection rate of a brown dwarf candidate seems to be comparable to that around solar-type stars within orbital separations of \sim3 AU.Comment: 19 pages, 4 figures, accepted by Ap

    The role of the initial surface density profiles of the disc on giant planet formation: comparing with observations

    Get PDF
    In order to explain the main characteristics of the observed population of extrasolar planets and the giant planets in the Solar System, we need to get a clear understanding of which are the initial conditions that allowed their formation. To this end we develop a semi-analytical model for computing planetary systems formation based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. With this model we explore not only different initial discs profiles motivated by similarity solutions for viscous accretion discs, but we also consider different initial conditions to generate a variety of planetary systems assuming a large range of discs masses and sizes according to the last results in protoplanetary discs observations. We form a large population of planetary systems in order to explore the effects in the formation of assuming different discs and also the effects of type I and II regimes of planetary migration, which were found to play fundamental role in reproducing the distribution of observed exoplanets. Our results show that the observed population of exoplanets and the giant planets in the Solar System are well represented when considering a surface density profile with a power law in the inner part characterized by an exponent of -1, which represents a softer profile when compared with the case most similar to the MMSN model case.Comment: 14 pages, 12 figures, MNRAS, 412, 211
    corecore