2 research outputs found

    The medical device industry market development analysis

    No full text
    The basis and interest for this thesis is the global economic situation of especially the high technology industry. In the traditional fields of high technology and more recently, in the field of ICT, there is a clear transition of work and markets toward the continents with lower development and production costs and those that are in the need of new technologies. This transition has evidently hit the developed countries (i.e. Western Europe and the USA) the hardest. Even though the other fields of technologies are clearly in transition, the statistics show that the medical device industry is in its highest growth in history. In fact, in 2012 the field grew at a pace of over 25 % annually in Finland and at double digits globally. In Finland, the medical device industry currently accounts for nearly 40 % of the total high technology market exports. This is remarkable to note, as this industry is relatively compact in size in comparison to the other high technologies. The objective of this research was to define the medical device technologies, to analyze the medical device technology market and, finally, to analyze reasons for its predicted continuous growth. This thesis covers the driving factors of this field of technology that predict the current trend in its market growth. This thesis also covers the aspects of medical devices and the medical device development processes, including the main differentiating factors compared to other fields of high technology products, especially those in the consumer markets. Finally, this study estimates the future economic growth of the medical device industry globally with special reference to Finland. The economic methods in this research are based on regression analysis of the medical device industry in the BRIC nations (Brazil, India, Russian Federation and P. R. China) and selected OECD countries. The variables used in the research include the trade balance, age structure, medical device technology status and GDP related factors, i.e. GDP in current USD and total health expenditure as percentage of GDP. Technology-wise, the research is based on the global trends in the medical device industry and the growing needs for new medical devices in general. The results and analyses indicate that the driving factors behind the predicted market growth can be explained by the science-push and demand-pull models. The time series and panel analyses indicate that the medical device industry could also serve as a global market opening technology. Furthermore, the results show that the growth of this industry is highly affected by population growth and age structure that increase the demand for new technologies to prevent and treat illnesses. Also, it was found that the medical device industry is not so greatly affected by global financial disruptions. Finally, the results show that the increase of medical device technologies clearly shortens the length of hospital stay which has been previously found to be a major factor in the rise of healthcare costs especially in the developed countries. This industry is thus evidently both a technology-push and a demand-pull based industry which is expected to grow due to the demand for higher quality healthcare while being less affected by general economic situations

    Methods for determination of the accuracy of surgical guidance devices:a study in the region of neurosurgical interest

    No full text
    Abstract Minimally invasive surgery (MIS) techniques have seen rapid growth as methods for improved operational procedures. The main technology of MIS is based on image guided surgery (IGS) devices, namely surgical navigators, surgical robotics and image scanners. With their widespread use in various fields of surgery, methods and tools that may be used routinely in the hospital setting for “real world” assessment of the accuracy of these devices are lacking. In this thesis the concept of accuracy testing was developed to meet the needs of quality assurance of navigators and robots in a hospital environment. Thus, accuracy was defined as the difference between actual and measured distances from an origin, also including determination of directional accuracy within a specific volume. Two precision engineered accuracy assessment phantoms with assessment protocols were developed as advanced materials and methods for the community. The phantoms were designed to include a common region of surgical interest (ROSI) that was determined to roughly mimic the size of the human head. These tools and methods were utilized in accuracy assessment of two commercial navigators, both enabling the two most widely used tracking modalities, namely the optical tracking system (OTS) and the electromagnetic tracking system (EMTS). Also a study of the accuracy and repeatability of a prototype surgical interactive robot (SIRO) was done. Finally, the phantoms were utilized in spatial accuracy assessment of a commercial surgical 3D CT scanner, the O-Arm. The experimental results indicate that the proposed definitions, tools and methods fulfill the requirements of quality assurance of IGS devices in the hospital setting. The OTS and EMTS tracking modalities were nearly identical in overall accuracy but had unique error trends. Also, the accuracy of the prototype robot SIRO was in the range recommended in the IGS community. Finally, the image quality of the O-Arm could be analyzed using the developed phantoms. Based on the accuracy assessment results, suggestions were made when setting up each IGS device for surgical procedures and for new applications in minimally invasive surgery.Tiivistelmä Mini-invasiivisen eli täsmäkirurgian tekniikoita ja teknologioita on alettu hyödyntää viime aikoina yhä enemmän. Tavoitteena on ollut parantaa kirurgisten operaatioiden tarkkuutta ja turvallisuutta. Täsmäkirurgiassa käytetyt teknologiat pohjautuvat kuvaohjattuihin kirurgisiin paikannuslaitteisiin. Kuvaohjattuihin laitteisiin kuuluvat navigaattorit, kirurgiset robotit ja kuvantalaitteet. Näiden laitteistojen kehittyminen on mahdollistanut tekniikoiden hyödyntämisen monialaisessa kirurgiassa. Paikannuslaitteistojen ja robottien yleistyminen on kuitenkin nostanut sairaaloissa esiin yleisen ongelman paikannustarkkuuden määrittämisessä käytännön olosuhteissa. Tässä väitöskirjassa esitetään kirurgisten yksiköiden käyttöön menetelmä sekä kaksi uutta fantomia ja protokollaa käytössä olevien paikannuslaitteistojen tarkkuuden määrittämiseen. Fantomit suunniteltiin sisältämään ennalta määritetty kirurginen kohdealue, mikä rajattiin käsittämään ihmisen kallon tilavuus. Fantomeita ja protokollaa hyödynnettiin kahden kaupallisen paikannuslaitteen tarkkuuden määrityksessä. Navigaattorit käyttivät optiseen ja elektromagneettiseen paikannukseen perustuvaa tekniikkaa. Lisäksi työssä kehitetyillä menetelmillä tutkittiin prototyyppivaiheessa olevan kirurgisen robotin paikannus- ja toistotarkkuutta sekä tietokonetomografialaitteen O-kaaren kuvan tarkkuuden määritystä. Kokeellisten tulosten perusteella työssä kehitetyt fantomit ja protokollat ovat luotettavia ja tarkkoja menetelmiä kirurgisten paikannuslaitteistojen tarkkuuden määrittämiseen sairaalaoloissa. Kirurgisten navigaattoreiden tarkkuuden määritystulokset osoittivat optisen ja elektromagneettisen paikannustekniikan olevan lähes yhtä tarkkoja. Prototyyppirobotin tarkkuus oli tulosten perusteella kirjallisuudessa esitettyjen suosituksien mukainen. Lisäksi O-kaaren kuvanlaatua voitiin tutkia kehitetyillä fantomeilla. Tarkkuudenmääritystulosten perusteella työssä ehdotetaan menetelmiä laitteistojen optimaalisesta käytöstä leikkaussalissa sekä laajennetaan niiden käyttömahdollisuuksia. Tuloksia voidaan hyödyntää myös paikannuslaitteistojen kehittämistyössä
    corecore