139 research outputs found

    Intradermal delivery of drugs by weak electric current

    Get PDF

    Iontophoresis of Biological Macromolecular Drugs

    Get PDF
    Over the last few decades, biological macromolecular drugs (e.g., peptides, proteins, and nucleic acids) have become a significant therapeutic modality for the treatment of various diseases. These drugs are considered superior to small-molecule drugs because of their high specificity and favorable safety profiles. However, such drugs are limited by their low oral bioavailability and short half-lives. Biological macromolecular drugs are typically administrated via invasive methods, e.g., intravenous or subcutaneous injections, which can be painful and induce needle phobia. Noninvasive transdermal delivery is an alternative administration route for the local and systemic delivery of biological macromolecular drugs. However, a challenge with the noninvasive transdermal delivery of biological macromolecular drugs is the outermost layer of the skin, known as the stratum corneum, which is a physical barrier that restricts the entry of extraneous macromolecules. Iontophoresis (IP) relies on the application of a low level of electricity for transdermal drug delivery, in order to facilitate the skin permeation of hydrophilic and charged molecules. The IP of several biological macromolecular drugs has recently been investigated. Herein, we review the IP-mediated noninvasive transdermal delivery of biological macromolecular drugs, their routes of skin permeation, their underlying mechanisms, and their advance applications

    Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the Treatment of Ischemic Stroke

    Get PDF
    Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells’ inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke

    Low Electric Treatment activates Rho GTPase via Heat Shock Protein 90 and Protein Kinase C for Intracellular Delivery of siRNA

    Get PDF
    Low electric treatment (LET) promotes intracellular delivery of naked siRNA by altering cellular physiology. However, which signaling molecules and cellular events contribute to LET-mediated siRNA uptake are unclear. Here, we used isobaric tags in relative and absolute quantification (iTRAQ) proteomic analysis to identify changes in the levels of phosphorylated proteins that occur during cellular uptake of siRNA promoted by LET. iTRAQ analysis revealed that heat shock protein 90 (Hsp90)α and myristoylated alanine-rich C-kinase substrate (Marcks) were highly phosphorylated following LET of NIH 3T3 cells, but not untreated cells. Furthermore, the levels of phosphorylated Hsp90α and protein kinase C (PKC)γ were increased by LET both with siRNA and liposomes having various physicochemical properties used as model macromolecules, suggesting that PKCγ activated partly by Ca2+ influx as well as Hsp90 chaperone function were involved in LET-mediated cellular siRNA uptake. Furthermore, LET with siRNA induced activation of Rho GTPase via Hsp90 and PKC, which could contribute to cellular siRNA uptake accompanied by actin cytoskeleton remodeling. Collectively, our results suggested that LET-induced Rho GTPase activation via Hsp90 and PKC would participate in actin-dependent cellular uptake of siRNA

    Low level electricity increases the secretion of extracellular vesicles from cultured cells

    Get PDF
    Exosomes, a type of extracellular vesicles, can be collected from the conditioned medium of cultured cells, and are expected to be used in disease therapy and drug delivery systems. However, since the yield of exosomes from conditioned medium is generally low, investigations to develop new methods to increase exosome secretion and to elucidate the secretion mechanism have been performed. Our previous studies demonstrated that activation of intracellular signaling including Rho GTPase and subsequent endocytosis of extraneous molecules in cells could be induced by low level electricity (0.3–0.5 mA/cm2). Since exosomes are produced in the process of endocytosis and secreted by exocytosis via certain signaling pathways, we hypothesized that low level electric treatment (ET) would increase exosome secretion from cultured cells via intracellular signaling activation. In the present study, the influence of ET (0.34 mA/cm2) on extracellular vesicle (EV) secretion from cultured cells was examined by using murine melanoma and murine fibroblast cells. The results showed that the number of EV particles collected by ultracentrifugation was remarkably increased by ET in both cell lines without cellular toxicity or changes in the particle distribution. Also, protein amounts of the collected EVs were significantly increased in both cells by ET without alteration of expression of representative exosome marker proteins. Moreover, in both cells, the ratio of particle numbers to protein amount was not significantly changed by ET. Rho GTPase inhibition significantly suppressed ET-mediated increase of EV secretion in murine melanoma, indicating that Rho GTPase activation could be involved in ET-mediated EV secretion in the cell. Additionally, there were almost no differences in uptake of each EV into each donor cell regardless of whether the cells had been exposed to ET for EV collection. Taken together, these results suggest that ET could increase EV secretion from both cancer and normal cells without apparent changes in EV quality

    Increasing Skeletal Muscle Mass in Mice by Non-Invasive Intramuscular Delivery of Myostatin Inhibitory Peptide by Iontophoresis

    Get PDF
    Sarcopenia is a major public health issue that affects older adults. Myostatin inhibitory-D-peptide-35 (MID-35) can increase skeletal muscle and is a candidate therapeutic agent, but a non-invasive and accessible technology for the intramuscular delivery of MID-35 is required. Recently, we succeeded in the intradermal delivery of various macromolecules, such as siRNA and antibodies, by iontophoresis (ItP), a non-invasive transdermal drug delivery technology that uses weak electricity. Thus, we expected that ItP could deliver MID-35 non-invasively from the skin surface to skeletal muscle. In the present study, ItP was performed with a fluorescently labeled peptide on mouse hind leg skin. Fluorescent signal was observed in both skin and skeletal muscle. This result suggested that the peptide was effectively delivered to skeletal muscle from skin surface by ItP. Then, the effect of MID-35/ItP on skeletal muscle mass was evaluated. The skeletal muscle mass increased 1.25 times with ItP of MID-35. In addition, the percentage of new and mature muscle fibers tended to increase, and ItP delivery of MID-35 showed a tendency to induce alterations in the levels of mRNA of genes downstream of myostatin. In conclusion, ItP of myostatin inhibitory peptide is a potentially useful strategy for treating sarcopenia

    Leukocyte-mimetic liposomes possessing leukocyte membrane proteins pass through inflamed endothelial cell layer by regulating intercellular junctions

    Get PDF
    Nanoparticles such as liposomes have been applied for the treatment of various diseases such as cancer and inflammatory diseases by utilizing the enhanced permeability and retention effect. However, their entry into inflammation sites is still limited since passive delivery of nanoparticles is often hampered by the presence of endothelial barriers. As leukocytes can pass through the inflamed endothelium via utilizing membrane protein functions, we hypothesized that incorporating leukocyte membrane proteins onto liposomal membranes may impart leukocyte-mimicking functions to liposomes, allowing for their adherence to and active passage through the inflamed endothelium. Herein, we developed leukocyte-mimetic liposomes (LM-Lipo) by leukocyte membrane protein transfer and evaluated their function in vitro. Transfer of membrane proteins from human leukemia cells onto liposomal membranes allowed for significant association of the liposomes with inflamed human endothelial cells, and subsequent passage through inflamed endothelial cell layer. The confocal images showed that LM-Lipo significantly induced vascular endothelial-cadherin displacement. These results indicate that LM-Lipo adhered to and regulated intercellular junctions of inflamed endothelial cell layer, resulting in passage through the layer, by mimicking the function of leukocytes. Furthermore, it is suggested that liposomes possessing leukocyte-like functions could be useful for drug delivery to inflammation sites by overcoming endothelial barriers

    Tocopheryl Phosphate Inhibits Rheumatoid Arthritis-Related Gene Expression In Vitro and Ameliorates Arthritic Symptoms in Mice

    Get PDF
    Anti-rheumatoid arthritis (RA) effects of α-tocopherol (α-T) have been shown in human patients in a double-blind trial. However, the effects of α-T and its derivatives on fibroblast-like synoviocytes (FLS) during the pathogenesis of RA remain unclear. In the present study, we compared the expression levels of genes related to RA progression in FLS treated with α-T, succinic ester of α-T (TS), and phosphate ester of α-T (TP), as determined via RT-PCR. The mRNA levels of interleukin (IL)-6, tumor necrosis factor-α (TNF-α), matrix metalloproteinase (MMP)-3, and MMP-13 were reduced by treatment with TP without cytotoxicity, while α-T and TS did not show such effects. Furthermore, intraperitoneal injection of TP ameliorated the edema of the foot and joint and improved the arthritis score in laminarin-induced RA model mice. Therefore, TP exerted anti-RA effects through by inhibiting RA-related gene expression

    Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery

    Get PDF
    Antibody-modified liposomes, immuno-liposomes, can selectively deliver encapsulated drug ‘cargos’ to cells via the interaction of cell surface proteins with antibodies. However, chemical modification of both the antibodies and phospholipids is required for the preparation of immuno-liposomes for each target protein using conventional methods, which is time-consuming. In the present study, we demonstrated that high-affinity protein A- (Protein A-R28: PAR28) displaying liposomes prepared by the post-insertion of PAR28-conjugated phospholipid through polyethylene glycol (PEG)-linkers (PAR28-PEG-lipo) can undergo rapid modification of antibodies on their surface, and the liposomes can be delivered to cells based on their modified antibodies. Anti-CD147 and anti-CD31 antibodies could be modified with PAR28-PEG-lipo within 1 h, and each liposome was specifically taken up by CD147- and CD31-positive cells, respectively. The cellular amounts of doxorubicin delivered by anti-CD147 antibody-modified PAR28-PEG-lipo were significantly higher than those of isotype control antibody-modified liposomes. PAR28-PEG-lipo can easily and rapidly undergo modification of various antibodies on their surface, which then makes them capable of selective drug delivery dependent on the antibodies

    Non-invasive delivery of biological macromolecular drugs into the skin by iontophoresis and its application to psoriasis treatment

    Get PDF
    Biological macromolecular drugs, such as antibodies and fusion protein drugs, have been widely employed for the treatment of various diseases. Administration routes are typically via invasive intravenous or subcutaneous injection with needles; the latter is challenging for applications involving inflamed skin (e.g., psoriasis) due to concerns of expansion of inflammation. As a method of non-invasive transdermal drug delivery, we previously demonstrated that iontophoresis (IP) using weak electric current (0.3-0.5 mA/cm2) enables transdermal permeation of hydrophilic macromolecules, such as small interfering RNA and nanoparticles into the skin, and subsequent exertion of their functions. The underlying mechanism was revealed to be via intercellular junction cleavage by cellular signaling activation initiated by Ca2+ influx. Based on these findings, in the present study, we hypothesized that non-invasive intradermal delivery of biological macromolecular drugs could be efficiently achieved via IP. Fluorescence of FITC-labeled IgG antibody was broadly observed in the skin after IP administration (0.4 mA/cm2 for 1 h) and extended from the epidermis to the dermis layer of hairless rats; passive antibody diffusion was not observed. In imiquimod-induced psoriasis model rats, antibodies were also delivered via IP into inflamed skin tissue. Additionally, upregulation of interleukin-6 mRNA levels, which is related to pathological progression of psoriasis, was significantly inhibited by IP of the anti-tumor necrosis factor-α drug etanercept, but not by its subcutaneous injection. Importantly, IP administration of etanercept significantly ameliorated epidermis hyperplasia, a symptom of psoriasis. Taken together, the present study is the first to demonstrate that IP can be applied as a non-invasive and efficient intradermal drug delivery technology for biological macromolecular drugs
    • …
    corecore