9 research outputs found
Effect of annealing on the depth profile of hole concentration in (Ga,Mn)As
The effect of annealing at 250 C on the carrier depth profile, Mn
distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As
layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low
temperatures, is studied by a variety of analytical methods. The vertical
gradient in hole concentration, revealed by electrochemical capacitance-voltage
profiling, is shown to play a key role in the understanding of conductivity and
magnetization data. The gradient, basically already present in as-grown
samples, is strongly influenced by post-growth annealing. From secondary ion
mass spectroscopy it can be concluded that, at least in thick layers, the
change in carrier depth profile and thus in conductivity is not primarily due
to out-diffusion of Mn interstitials during annealing. Two alternative possible
models are discussed.Comment: 8 pages, 8 figures, to appear in Phys. Rev.
Anomalous behavior of spin wave resonances in Ga_{1-x}Mn_{x}As thin films
We report ferromagnetic and spin wave resonance absorption measurements on
high quality epitaxially grown Ga_{1-x}Mn_{x}As thin films. We find that these
films exhibit robust ferromagnetic long-range order, based on the fact that up
to seven resonances are detected at low temperatures, and the resonance
structure survives to temperatures close to the ferromagnetic transition. On
the other hand, we observe a spin wave dispersion which is linear in mode
number, in qualitative contrast with the quadratic dispersion expected for
homogeneous samples. We perform a detailed numerical analysis of the
experimental data and provide analytical calculations to demonstrate that such
a linear dispersion is incompatible with uniform magnetic parameters. Our
theoretical analysis of the ferromagnetic resonance data, combined with the
knowledge that strain-induced anisotropy is definitely present in these films,
suggests that a spatially dependent magnetic anisotropy is the most likely
reason behind the anomalous behavior observed.Comment: 9 pages, including 6 figure
Recommended from our members