26 research outputs found
Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC
We present the first results of meson production in the K^+K^- decay channel
from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by
the PHENIX detector at RHIC. Precision resonance centroid and width values are
extracted as a function of collision centrality. No significant variation from
the PDG accepted values is observed. The transverse mass spectra are fitted
with a linear exponential function for which the derived inverse slope
parameter is seen to be constant as a function of centrality. These data are
also fitted by a hydrodynamic model with the result that the freeze-out
temperature and the expansion velocity values are consistent with the values
previously derived from fitting single hadron inclusive data. As a function of
transverse momentum the collisions scaled peripheral.to.central yield ratio RCP
for the is comparable to that of pions rather than that of protons. This result
lends support to theoretical models which distinguish between baryons and
mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
J/psi production from proton-proton collisions at sqrt(s) = 200 GeV
J/psi production has been measured in proton-proton collisions at sqrt(s)=
200 GeV over a wide rapidity and transverse momentum range by the PHENIX
experiment at RHIC. Distributions of the rapidity and transverse momentum,
along with measurements of the mean transverse momentum and total production
cross section are presented and compared to available theoretical calculations.
The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/-
0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/-
0.16(sys) GeV/c.Comment: 326 authors, 6 pages text, 4 figures, 1 table, RevTeX 4. To be
submitted to PRL. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Measurement of Single Electron Event Anisotropy in Au+Au Collisions at sqrt(s_NN) = 200 GeV
The transverse momentum dependence of the azimuthal anisotropy parameter v_2,
the second harmonic of the azimuthal distribution, for electrons at
mid-rapidity (|eta| < 0.35) has been measured with the PHENIX detector in Au+Au
collisions at sqrt(s_NN) = 200 GeV. The measurement was made with respect to
the reaction plane defined at high rapidities (|eta| = 3.1 -- 3.9). From the
result we have measured the v_2 of electrons from heavy flavor decay after
subtraction of the v_2 of electrons from other sources such as photon
conversions and Dalitz decay from light neutral mesons. We observe a non-zero
single electron v_2 with a 90% confidence level in the intermediate p_T region.Comment: 330 authors, 11 pages text, RevTeX4, 9 figures, 1 tables. Submitted
to Physical Review C. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Systematic Studies of the Centrality and sqrt(s_NN) Dependence of dE_T/deta and dN_ch/deta in Heavy Ion Collisions at Mid-rapidity
The PHENIX experiment at RHIC has measured transverse energy and charged
particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6,
130 and 200 GeV as a function of centrality. The presented results are compared
to measurements from other RHIC experiments, and experiments at lower energies.
The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants
is consistent with logarithmic scaling for the most central events. The
centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured
incident energies. At RHIC energies the ratio of transverse energy per charged
particle was found independent of centrality and growing slowly with
sqrt(s_NN). A survey of comparisons between the data and available theoretical
models is also presented.Comment: 327 authors, 25 pages text, 19 figures, 17 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Centrality Dependence of Charm Production from Single Electrons in Au+Au Collisions at sqrt(s_NN) = 200 GeV
The PHENIX experiment has measured mid-rapidity transverse momentum spectra
(0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in
Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from
photon conversions and Dalitz decays of light neutral mesons are measured by
introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are
statistically removed. The subtracted ``non-photonic'' electron spectra are
primarily due to the semi-leptonic decays of hadrons containing heavy quarks
(charm and bottom). For all centralities, charm production is found to scale
with the nuclear overlap function, T_AA. For minimum-bias collisions the charm
cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/-
160 (sys.) microbarns.Comment: 326 authors, 4 pages text, 3 figures, 1 table, RevTeX 4. To be
submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Vascular cognitive impairment: pathophysiological mechanisms, insights into structural basis, and perspectives in specific treatments
Vladimir A Parfenov,1 Olga D Ostroumova,2,3 Tatiana M Ostroumova,1 Alexey I Kochetkov,2 Victoria V Fateeva,4 Kristina K Khacheva,4 Gulnara R Khakimova,5 Oleg I Epstein61Department of Neurology, Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation; 2Laboratory of Clinical Pharmacology and therapy, Federal State Budgetary Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Russian Clinical and Research Center of Gerontology, Moscow, Russia; 3Department of Clinical Pharmacology, Internal Medicine and Propaedeutics I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; 4Medical Information Department, OOO NPF Materia Medica Holding, Moscow, Russian Federation; 5Research and Analytical Division of Scientific Research and Development Department, Moscow, Russian Federation; 6Laboratory of Physiologicaly Active Substances, Department of Molecular and Cellular Pathophysiology, Research Institute of General Pathology and Pathophysiology, Moscow, Russian FederationAbstract: Vascular cognitive impairment (VCI) and vascular dementia are the most common forms of cognitive disorder associated with cerebrovascular disease and related to increased morbidity and mortality among the older population. Growing evidence suggests the contribution of blood-pressure variability, cardiac arrhythmia, hyperactivation of the renin–angiotensin–aldosterone system, endothelial dysfunction, vascular remodeling and stiffness, different angiopathies, neural tissue homeostasis, and systemic metabolic disorders to the pathophysiology of VCI. In this review, we focus on factors contributing to cerebrovascular disease, neurovascular unit alterations, and novel approaches to cognitive improvement in patients with cognitive decline. One of the important factors associated with the neuronal causes of VCI is the S100B protein, which can affect the expression of cytokines in the brain, support homeostasis, and regulate processes of differentiation, repair, and apoptosis of the nervous tissue. Since the pathological basis of VCI is complex and diverse, treatment affecting the mechanisms of cognitive disorders should be developed. The prospective role of a novel complex drug consisting of released–active antibodies to S100 and to endothelial NO synthase in VCI treatment is highlighted.Keywords: vascular cognitive impairment, cerebrovascular disease, neurovascular unit, endothelial dysfunction, S100 protei
Synthesis of alpha-amino acids via asymmetric phase transfer-catalyzed alkylation of achiral nickel(II) complexes of glycine-derived Schiff bases
Achiral, diamagnetic Ni(II) complexes 1 and 3 have been synthesized from Ni(II) salts and the Schiff bases, generated from glycine and PBP and PBA, respectively, in MeONa/MeOH solutions. The requisite carbonyl-derivatizing agents pyridine-2-carboxylic acid(2-benzoyl-phenyl)-amide (PBP) and pyridine-2-carboxylic acid(2-formyl-phenyl)-amide (PBA) were readily prepared from picolinic acid and o-aminobenzophenone or picolinic acid and methyl o-anthranilate, respectively. The structure of 1 was established by X-ray crystallography. Complexes 1 and 3 were found to undergo C-alkylation with alkyl halides under PTC conditions in the presence of β-naphthol or benzyltriethylammonium bromide as catalysts to give mono- and bis-alkylated products, respectively. Decomposition of the complexes with aqueous HCl under mild conditions gave the required amino acids, and PBP and PBA were recovered. Alkylation of 1 with highly reactive alkyl halides, carried out under the PTC conditions in the presence of 10% mol of (S)- or (R)-2-hydroxy-2'-amino-1,1'-binaphthyl (NOBIN) and/or its N-acyl derivatives and by (S)- or (R)-2-hydroxy-8'-amino-1,1'-binaphthyl (iso-NOBIN) and its N-acyl derivatives, respectively, gave rise to α-amino acids with high enantioselectivities (90-98.5% ee) in good-to-excellent chemical yields at room temperature within several minutes. An unusually large positive nonlinear effect was observed in these reactions. The Michael addition of acrylic derivatives 37 to 1 was conducted under similar conditions with up to 96% ee. The 1H NMR and IR spectra of a mixture of the sodium salt of NOBIN and 1 indicated formation of a complex between the two components. Implications of the association and self-association of NOBIN for the observed sense of asymmetric induction and nonlinear effects are discussed