6,555 research outputs found
Deuteron production and elliptic flow in relativistic heavy ion collisions
The hadronic transport model \textsc{art} is extended to include the
production and annihilation of deuterons via the reactions , where and stand for baryons and mesons, respectively, as well as
their elastic scattering with mesons and baryons in the hadronic matter. This
new hadronic transport model is then used to study the transverse momentum
spectrum and elliptic flow of deuterons in relativistic heavy ion collisions,
with the initial hadron distributions after hadronization of produced
quark-gluon plasma taken from a blast wave model. The results are compared with
those measured by the PHENIX and STAR Collaborations for Au+Au collisions at
GeV, and also with those obtained from the coalescence
model based on freeze-out nucleons in the transport model.Comment: 9 pages, 10 figures, REVTeX, version to be published in Phys. Rev.
Effects of hadronic potentials on elliptic flows in relativistic heavy ion collisions
Within the framework of a multiphase transport (AMPT) model that includes
both initial partonic and final hadronic interactions, we show that including
mean-field potentials in the hadronic phase leads to a splitting of the
elliptic flows of particles and their antiparticles, providing thus a plausible
explanation of the different elliptic flows between and ,
and , and and observed in recent Beam Energy Scan (BES)
program at the Relativistic Heavy-Ion Collider (RHIC).Comment: 5 pages, 7 figure
Partonic effects on higher-order anisotropic flows in relativistic heavy-ion collisions
Higher-order anisotropic flows and in heavy ion collisions at
the Relativistic Heavy Ion Collider are studied in a multiphase transport model
that has previously been used successfully for describing the elliptic flow
in these collisions. We find that the same parton scattering cross
section of about 10 \textrm{mb} used in explaining the measured can also
reproduce the recent data on and from Au + Au collisions at
\textrm{AGeV}. It is further found that the is a more
sensitive probe of the initial partonic dynamics in these collisions than
. Moreover, higher-order parton anisotropic flows are nonnegligible and
satisfy the scaling relation , which
leads naturally to the observed similar scaling relation among hadron
anisotropic flows when the coalescence model is used to describe hadron
production from the partonic matter.Comment: 5 pages, 3 figures, version to appear in PRC as a Rapid Communicatio
Multiphase transport model for heavy ion collisions at RHIC
Using a multiphase transport model (AMPT) with both partonic and hadronic
interactions, we study the multiplicity and transverse momentum distributions
of charged particles such as pions, kaons and protons in central Au+Au
collisions at RHIC energies. Effects due to nuclear shadowing and jet quenching
on these observables are also studied. We further show preliminary results on
the production of multistrange baryons from the strangeness-exchange reactions
during the hadronic stage of heavy ion collisions.Comment: 4 pages, 4 figures, espcrc1.sty included, presented at 15th
International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions
(QM2001), Long Island, New York, January 200
Phi meson production in relativistic heavy ion collisions
Within a multiphase transport model we study phi meson production in
relativistic heavy ion collisions from both superposition of initial multiple
proton-proton interactions and the secondary collisions in the produced
hadronic matter. The yield of phi mesons is then reconstructed from their
decaying product of either the kaon-antikaon pairs or the dimuon pairs. Since
the kaon-antikaon pairs at midrapidity with low transverse momenta are
predominantly rescattered or absorbed in the hadronic medium, they can not be
used to reconstruct the phi meson and lead thus to a smaller reconstructed phi
meson yield than that reconstructed from the dimuon channel. With in-medium
mass modifications of kaons and phi mesons, the phi yield from dimuons is
further enhanced compared to that from the kaon-antikaon pairs. The model
result is compared with the experimental data at the CERN/SPS and RHIC energies
and its implications to quark-gluon plasma formation are discussed.Comment: Revised version, to appear in Nucl. Phys.
Charmonium Absorption in the Meson-exchange Model
We review the meson-exchange model for charmonium absorption by hadrons. This
includes the construction of the interaction Lagrangians, the determination of
the coupling constants, the introduction of form factors, and the predicted
cross sections for absorption by both mesons and nucleons. We further
discuss the effects due to anomalous parity interactions, uncertainties in form
factors, constraints from chiral symmetry, and the change of charmed meson mass
in medium on the cross sections for charmonium absorption in hadronic matter.Comment: 10 pages, 2 figures. Talk given at Quark Matter 2002 (QM 2002),
Nantes, France, 18-24 July 2002. To appear in the proceedings (Nucl. Phys. A
- …