163 research outputs found

    Schisandrin B as a Hormetic Agent for Preventing Age-Related Neurodegenerative Diseases

    Get PDF
    Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of neurodegenerative diseases, with the latter preceding the appearance of clinical symptoms. The energy failure resulting from mitochondrial dysfunction further impedes brain function, which demands large amounts of energy. Schisandrin B (Sch B), an active ingredient isolated from Fructus Schisandrae, has been shown to afford generalized tissue protection against oxidative damage in various organs, including the brain, of experimental animals. Recent experimental findings have further demonstrated that Sch B can protect neuronal cells against oxidative challenge, presumably by functioning as a hormetic agent to sustain cellular redox homeostasis and mitoenergetic capacity in neuronal cells. The combined actions of Sch B offer a promising prospect for preventing or possibly delaying the onset of neurodegenerative diseases, as well as enhancing brain health

    Enhancement of ATP generation capacity, antioxidant activity and immunomodulatory activities by Chinese Yang and Yin tonifying herbs

    Get PDF
    Chinese tonifying herbs such as Herba Cistanche, Ganoderma and Cordyceps, which possess antioxidant and/or immunomodulatory activities, can be useful in the prevention and treatment of age-related diseases. Pharmacological studies on Yang and Yin tonifying herbs suggest that Yang tonifying herbs stimulate mitochondrial adenosine triphosphate (ATP) generation, presumably through the intermediacy of reactive oxidant species, leading to the enhancement of cellular/mitochondrial antioxidant status. Yin tonifying herbs, however, apart from possessing antioxidant properties, exert mainly immunomodulatory functions that may boost a weak immune system and may also suppress overreactive immune responses. The abilities of Yang and Yin Chinese tonifying herbs to enhance ATP generation and to exhibit antioxidant and/or immunomodulatory actions are the pharmacological basis for their beneficial effects on the retardation of aging

    Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response

    Get PDF
    ATM and ATR protein kinases play a crucial role in cellular DNA damage responses. The inhibition of ATM and ATR can lead to the abolition of the function of cell cycle checkpoints. In this regard, it is expected that checkpoint inhibitors can serve as sensitizing agents for anti-cancer chemo/radiotherapy. Although several ATM inhibitors have been reported, there are no ATR-specific inhibitors currently available. Here, we report the inhibitory effect of schisandrin B (SchB), an active ingredient of Fructus schisandrae, on ATR activity in DNA damage response. SchB treatment significantly decreased the viability of A549 adenocarcinoma cells after UV exposure. Importantly, SchB treatment inhibited both the phosphorylation levels of ATM and ATR substrates, as well as the activity of the G2/M checkpoint in UV-exposed cells. The protein kinase activity of immunoaffinity-purified ATR was dose-dependently decreased by SchB in vitro (IC50: 7.25 μM), but the inhibitory effect was not observed in ATM, Chk1, PI3K, DNA-PK, and mTOR. The extent of UV-induced phosphorylation of p53 and Chk1 was markedly reduced by SchB in ATM-deficient but not siATR-treated cells. Taken together, our demonstration of the ability of SchB to inhibit ATR protein kinase activity following DNA damage in cells has clinical implications in anti-cancer therapy

    New Perspectives on Chinese Herbal Medicine (Zhong-Yao) Research and Development

    Get PDF
    Synthetic chemical drugs, while being efficacious in the clinical management of many diseases, are often associated with undesirable side effects in patients. It is now clear that the need of therapeutic intervention in many clinical conditions cannot be satisfactorily met by synthetic chemical drugs. Since the research and development of new chemical drugs remain time-consuming, capital-intensive and risky, much effort has been put in the search for alternative routes for drug discovery in China. This narrative review illustrates various approaches to the research and drug discovery in Chinese herbal medicine. Although this article focuses on Chinese traditional drugs, it is also conducive to the development of other traditional remedies and innovative drug discovery

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A question of quality

    No full text
    The recent accession of China to the WTO is widely anticipated to have a positive impact on the place of Chinese herbal products in global markets. This international conference on Chinese herbal medicine - this first of its type - attracted over 600 experts and business professionals from around the world. Although the theme of the conference was commercialization, a number of speakers addressed the crucial issue of quality assurance

    Effects of pharmacological preconditioning by emodin/oleanolic acid treatment and/or ischemic preconditioning on mitochondrial antioxidant components as well as the susceptibility to ischemia-reperfusion injury in rat hearts

    No full text
    Using an ex vivo rat heart model of ischemia-reperfusion (I-R) injury, we examined the effect of pharmacological preconditioning by chronic treatment with emodin (EMD)/oleanolic acid (OA) at low dose (25 mu mol/kg/day x 15) and/or ischemic preconditioning (IPC) (4 cycles of 5 min ischemia followed by 5 min of reperfusion) on myocardial I-R injury. The results indicated that EMD/OA pretreatment, IPC, or their combinations (EMD+IPC and OA+IPC) protected against myocardial I-R injury, as assessed by lactate dehydrogenase leakage and contractile force recovery. The cardioprotection was associated with a differential enhancement in mitochondrial antioxidant components. The combined EMD/OA and IPC pretreatment produced cardioprotective action in a semi-additive manner. This suggested that EMD/OA pretreatment and IPC protected against myocardial I-R injury via a similar but not identical biochemical mechanism

    Oleanolic acid protects against myocardial ischemia-reperfusion injury by enhancing mitochondrial antioxidant mechanism mediated by glutathione and alpha-tocopherol in rats

    No full text
    The effect of oleanolic acid (OA) pretreatment on myocardial ischemia-reperfusion (I-R) injury was investigated using an ex vivo rat heart model. Pretreatment with OA at daily doses (0.6 and 1.2 mmol/kg) for 3 days significantly protected against I-R injury in isolated rat hearts, as evidenced by the decrease in the extent of lactate dehydrogenase (LDH) leakage and improvement in contractile force recovery. The cardioprotection was associated with a slight increase in mitochondrial reduced glutathione (GSH) level and a significant increase in mitochondrial alpha-tocopherol (alpha-TOC) level, when compared with the unpretreated I-R group. To further investigate the mechanism of myocardial protection, pretreatment with a single dose of OA (1.2 mmol/kg) produced a time-dependent protection against myocardial I-R injury as assessed by LDH leakage, with the maximum extent of protection occurring at 48 hour post-dosing. The maximum cardioprotection was associated with parallel increases in mitochondrial GSH and alpha-TOC levels in ischemic-reperfused hearts, with the stimulation of the alpha-TOC level being optimal. Furthermore, buthionine sulfoximine/phorone (BSO/PHO) treatment, while abolishing the enhancing effect of OA on mitochondrial GSH, did not completely abrogate the cardioprotection against I-R injury. The remnant cardioprotection was associated with an increase in mitochondrial alpha-TOC level, when compared with the unpretreated I-R group with BSO/PHO. The results suggest that the cardioprotection afforded by OA pretreatment against I-R injury may at least in part be attributed to the enhancement of mitochondrial antioxidant mechanism mediated by GSH and alpha-TOC, particularly under I-R conditions
    corecore