4 research outputs found

    Silicon Oxycarbide-Graphite Electrodes for High-Power Energy Storage Devices

    No full text
    Herein we present a study on polymer-derived silicon oxycarbide (SiOC)/graphite composites for a potential application as an electrode in high power energy storage devices, such as Lithium-Ion Capacitor (LIC). The composites were processed using high power ultrasound-assisted sol-gel synthesis followed by pyrolysis. The intensive sonication enhances gelation and drying process, improving the homogenous distribution of the graphitic flakes in the preceramic blends. The physicochemical investigation of SiOC/graphite composites using X-ray diffraction, ²⁹Si solid state NMR and Raman spectroscopy indicated no reaction occurring between the components. The electrochemical measurements revealed enhanced capacity (by up to 63%) at high current rates (1.86 A g⁻¹) recorded for SiOC/graphite composite compared to the pure components. Moreover, the addition of graphite to the SiOC matrix decreased the value of delithiation potential, which is a desirable feature for anodes in LIC

    Silicon Oxycarbide-Graphite Electrodes for High-Power Energy Storage Devices

    No full text
    Herein we present a study on polymer-derived silicon oxycarbide (SiOC)/graphite composites for a potential application as an electrode in high power energy storage devices, such as Lithium-Ion Capacitor (LIC). The composites were processed using high power ultrasound-assisted sol-gel synthesis followed by pyrolysis. The intensive sonication enhances gelation and drying process, improving the homogenous distribution of the graphitic flakes in the preceramic blends. The physicochemical investigation of SiOC/graphite composites using X-ray diffraction, 29Si solid state NMR and Raman spectroscopy indicated no reaction occurring between the components. The electrochemical measurements revealed enhanced capacity (by up to 63%) at high current rates (1.86 A g−1) recorded for SiOC/graphite composite compared to the pure components. Moreover, the addition of graphite to the SiOC matrix decreased the value of delithiation potential, which is a desirable feature for anodes in LIC

    Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites

    No full text
    In this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO2 to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite. Therefore, to avoid drawbacks with carbon depletion, we used graphite as a substitute during the synthesis of precursors. The ternary composites were synthesized from liquid precursors and flake graphite using the ultrasound-assisted hydrosilylation method and pyrolysis at 1000 °C in an Ar atmosphere. The role of the graphitic component is to ensure good electric conductivity and the softness of the material, which are crucial for long term stability during alloying–dealloying processes. The presented approach allows us to increase the content of the tin precursor from 40 wt.% to 60 wt.% without losing the electrochemical stability of the final material. The charge/discharge capacity (at 372 mA g−1 current rate) of the tailored SiOC/C/Sn composite is about 100 mAh g−1 higher compared with that of the binary SiOC/Sn composite. The ternary composites, however, are more sensitive to high current rates (above 372 mA g−1) compared to the binary one because of the presence of graphitic carbon

    New insights on lithium storage in silicon oxycarbide/carbon composites: Impact of microstructure on electrochemical properties

    No full text
    In this work, we study the impact of the preceramic precursor vinyltriethoxysilane (VTES) on the electrochemical performance of silicon oxycarbide (SiOC) glass/graphite composites. We apply an innovative approach based on high-power ultrasounds in order to obtain highly homogenous composites with a uniform distribution of small graphitic flakes. This procedure enhances gelation and drying of VTES-based preceramic polymer/graphite blends. The SiOC/graphite composites reveal stable capacities (up to 520 mAh g-1 after 270 cycles), which are much higher than the sum derived from the ratio of the components. Additionally, the first cycle Coulombic efficiencies obtained for the composites are 15% higher than that of the pristine VTES-based SiOC ceramic. These properties are identified as the synergistic effect, originated from the addition of graphite to VTES-based SiOCs. Interestingly, such improvement in electrochemical performance is not noticed in the case of analogous SiOC/ graphite composites based on phenyltriethoxysilane (PhTES) precursor. The microstructural investigation of the composites based on two different preceramic precursors using solid-state 29Si NMR and Raman Spectroscopy unveils the reason for such discrepancy in their electrochemical behaviour. Keyword
    corecore