56 research outputs found

    Physical and Clinical Potential of offline PET/CT Imaging after Proton Radiotherapy

    Get PDF
    Bei der Behandlung von Krebserkrankungen mit Protonenstrahlen können empindliche Gewebestrukturen direkt hinter dem Zielvolumen durch den schnellen Dosisabfall am Ende der Reichweite von Protonen vor Strahlung geschützt werden. Dieser ernorme Vorteil von Protonen wird jedoch nicht immer voll genutzt, da die Behandlungsplanung und -durchführung oft schwer einschätzbare Unsicherheiten beinhaltet. Die erfolgversprechendste In-Vivo-Methode zur nicht invasiven Kontrolle von Protonenstrahlbehandlungen ist die Positron Emissions Tomographie (PET). Positronenemitter, wie zum Beispiel 11C und 15O, werden bei nuklearen Reaktionen entlang des Strahlengangs produziert und können als räumliche Indikatoren für die deponierte Dosis genutzt werden. So lassen sich PET/CT-Messungen als Qualität sichernde Maßnahme zur Überprüfung der tatsächlich verabreichte Dosis und zur Quantifizierung von Unsicherheiten nutzen. In dieser Arbeit werden die physikalischen und klinischen Möglichkeiten von zeitversetzten PET/CT-Messungen zur Behandlungskontrolle untersucht. In einer Phantom-Studie wird die physikalische Reproduzierbarkeit, die Konsistenz und die Sensivität der Methode erkundet. In einer Patienten-Studie wird ihre klinische Leistungsfähigkeit qualitativ und quantitativ betrachtet. Dafür werden Daten von 23 Patienten (9 Patientendatensätze wurden vor, 14 im Rhamen dieser Arbeit gesammelt) mit vielfältigen Tumorerkrankungen unterschiedlicher Art und Lokalitätern analysiert. Es werden Patientenuntergruppen bestimmt, die aus der Anwendung der Methode am meisten profitieren. Darüber hinaus werden technische und methodische Verbesserungen untersucht, die eine breitere Anwendbarkeit von PET/CT-Messungen zur Behandlungskontrolle bei der Strahlentherapie mit Protonen ermöglichen

    Time-resolved dosimetry for validation of 4D dose calculation in PBS proton therapy

    Get PDF
    Four-dimensional dose calculation (4D-DC) is crucial for predicting the dosimetric outcome in the presence of intra-fractional organ motion. Time-resolved dosimetry can provide significant insights into 4D pencil beam scanning dose accumulation and is therefore irreplaceable for benchmarking 4D-DC. In this study a novel approach of time-resolved dosimetry using five PinPoint ionization chambers (ICs) embedded in an anthropomorphic dynamic phantom was employed and validated against beam delivery details. Beam intensity variations as well as the beam delivery time structure were well reflected with an accuracy comparable to the temporal resolution of the IC measurements. The 4D dosimetry approach was further applied for benchmarking the 4D-DC implemented in the RayStation 6.99 treatment planning system. Agreement between computed values and measurements was investigated for (i) partial doses based on individual breathing phases, and (ii) temporally distributed cumulative doses. For varied beam delivery and patient-related parameters the average unsigned dose difference for (i) was 0.04 +/- 0.03 Gy over all considered IC measurement values, while the prescribed physical dose was 2 Gy. By implementing (ii), a strong effect of the dose gradient on measurement accuracy was observed. The gradient originated from scanned beam energy modulation and target motion transversal to the beam. Excluding measurements in the high gradient the relative dose difference between measurements and 4D-DCs for a given treatment plan at the end of delivery was 3.5% on average and 6.6% at maximum over measurement points inside the target. Overall, the agreement between 4D dose measurements in the moving phantom and retrospective 4D-DC was found to be comparable to the static dose differences for all delivery scenarios. The presented 4D-DC has been proven to be suitable for simulating treatment deliveries with various beam- as well as patient-specific parameters and can therefore be employed for dosimetric validation of different motion mitigation techniques

    Validation of the proton range accuracy and optimization of CT calibration curves utilizing range probing

    Get PDF
    Proton therapy is affected by range uncertainty, which is partly caused by an ambiguous conversion from x-ray attenuation to proton stopping power. CT calibration curves, or Hounsfield look-up tables (HLUTs), are institution-specific and may be a source of systematic errors in treatment planning. A range probing method to verify, optimize and validate HLUTs for proton treatment is proposed. An initial HLUT was determined according to the stoichiometric approach. For HLUT validation, three types of animal tissue phantoms were prepared: a pig's head, 'thorax' and femur. CT scans of the phantoms were taken and a structure, simulating a water slab, was added on the scan distal to the phantoms to mimic the detector used for integral depth-dose measurements. The CT scans were imported into the TPS to calculate individual pencil beams directed through the phantoms. The phantoms were positioned at the therapy system isocenter using x-ray imaging. Shoot-through pencil beams were delivered, and depth-dose profiles were measured using a multi-layer ionization chamber. Measured depth-dose curves were compared to the calculated curves and the range error per spot was determined. Based on the water equivalent path length (WEPL) of individual spot, a range error margin was defined. Ratios between measured error and theoretical margin were calculated per spot. The HLUT optimization was performed by identifying systematic shifts of the mean range error per phantom and minimizing the ratios between range errors and uncertainty margins. After optimization, the ratios of the actual range error and the uncertainty margin over the complete data set did not exceed 0.75 (1.5 SD), indicating that the actual errors are covered by the theoretical uncertainty recipe. The feasibility of using range probing to assess range errors was demonstrated. The theoretical uncertainty margins in the institution-specific setting potentially may be reduced by ∼25%

    Classification of various sources of error in range assessment using proton radiography and neural networks in head and neck cancer patients

    Get PDF
    This study evaluates the suitability of convolutional neural networks (CNN) to automatically process proton radiography (PR) based images. CNNs are used to classify PR images impaired by several sources of error affecting the proton range, more precisely setup and calibration curve errors. PR simulations were performed in 40 head and neck cancer patients, at three different anatomical locations (fields A, B and C, centered for head and neck, neck and base of skull coverage). Field sizes were 26x26cm2 for field A and 4.5x4.5cm2 for fields B and C. Range shift maps were obtained by comparing an unperturbed reference PR against a PR where one or more sources of error affected the proton range. CT calibration curve errors in soft, bone and fat tissues and setup errors in the anterior-posterior and inferior-superior directions were simulated individually and in combination. A CNN was trained for each type of PR field, leading to 3 CNNs trained with a mixture of range shift maps arising from one or more sources of range error. To test the full/partial/wrong agreement between predicted and actual sources of range error in the range shift maps, exact, partial and wrong match percentages were computed for an independent test dataset containing range shift maps arising from isolated or combined errors, retrospectively. The CNN corresponding to field A showed superior capability to detect isolated and combined errors, with exact matches of 92% and 71% respectively. Field B showed exact matches of 80% and 54%, and field C resulted in exact matches of 77% and 41%. The suitability of CNNs to classify PR based images containing different sources of error affecting the proton range was demonstrated. This procedure enables the detection of setup and calibration curve errors when they appear individually or in combination, providing valuable information for the interpretation of PR images

    Analysis of the applicability of two-dimensional detector arrays in terms of sampling rate and detector size to verify scanned intensity-modulated proton therapy plans

    Get PDF
    Purpose: The introduction of advanced treatment techniques in proton therapy, such as intensity-modulated proton therapy, leads to an increased need for patient-specific quality assurance, especially an accurate treatment plan verification becomes inevitable. In this study, signal theoretical analysis of dose distributions in scanned proton therapy is performed to investigate the feasibility and limits of two-dimensional (2D) detector arrays for treatment plan verification. Methods: 2D detector arrays are characterized by two main aspects: the distance between the single detectors on the array or the sampling frequency; and the lateral response functions of a single detector. The analysis is based on single spots, reference fields and on measured and calculated dose distributions of typical intensity-modulated proton therapy treatment plans with and without range shifter. Measurements were performed with Gafchromic EBT3 films (Ashland Speciality Ingredients G.P., Bridgewater, NJ, USA), the MatriXX PT detector array (IBA Dosimetry, Schwarzenbruck, Germany) and the OCTAVIUS detector array 1500XDR (PTW-Freiburg, Germany) at an IBA Proteus PLUS proton therapy system (Ion Beam Applications, Louvain-la-Neuve, Belgium). Dose calculations were performed with the treatment planning system RayStation 6 or 8 (RaySearch Laboratories, Sweden). Results: The Fourier analysis of the data of the treatment planning system and film measurements show maximum frequencies of 0.06/mm for the plan with range shifter and 0.083/mm for the plan without range shifter. According to the Nyquist theorem, this corresponds to minimum required sampling distances of 8.3 and 6 mm, respectively. By comparison, the sampling distances of the arrays of 7.6 mm (MatriXX PT) and 7.1 mm (OD1500XDR) are sufficient to reconstruct the dose distributions adequately from measurements if range shifters are used, whereas some fields of the plans without range shifter violated the Nyquist requirement. The lateral dose response functions of the single detectors within the arrays have clearly higher frequencies than the treatment plans and thus the volume effect only slightly influences the measurements. Consequently, the array measurements show high gamma passing rates with at least 96 % and a good agreement between the investigated line profiles. Conclusion: The results indicate that the detector dimensions and sampling distances of the arrays are in most studied cases adequate not to substantially influence the measurement process when they are used for analyzing typical intensity-modulated proton therapy treatment plans. Nevertheless, clinical conditions have been identified, for instance treatment plans without range shifter, under which the Nyquist theorem is violated such that a full representation of the dose distributions with the measurements is not feasible. In these cases, analysis of measurements is limited to pointwise comparisons

    Experimental validation of 4D log file-based proton dose reconstruction for interplay assessment considering amplitude-sorted 4DCTs

    Get PDF
    Purpose The unpredictable interplay between dynamic proton therapy delivery and target motion in the thorax can lead to severe dose distortions. A fraction-wise four-dimensional (4D) dose reconstruction workflow allows for the assessment of the applied dose after patient treatment while considering the actual beam delivery sequence extracted from machine log files, the recorded breathing pattern and the geometric information from a 4D computed tomography scan (4DCT). Such an algorithm capable of accounting for amplitude-sorted 4DCTs was implemented and its accuracy as well as its sensitivity to input parameter variations was experimentally evaluated. Methods An anthropomorphic thorax phantom with a movable insert containing a target surrogate and a radiochromic film was irradiated with a monoenergetic field for various 1D target motion forms (sin, sin(4)) and peak-to-peak amplitudes (5/10/15/20/30 mm). The measured characteristic film dose distributions were compared to the respective sections in the 4D reconstructed doses using a 2D gamma-analysis (3 mm, 3%); gamma-pass rates were derived for different dose grid resolutions (1 mm/3 mm) and deformable image registrations (DIR, automatic/manual) applied during the 4D dose reconstruction process. In an additional analysis, the sensitivity of reconstructed dose distributions against potential asynchronous timing of the motion and machine log files was investigated for both a monoenergetic field and more realistic 4D robustly optimized fields by artificially introduced offsets of +/- 1/5/25/50/250 ms. The resulting dose distributions with asynchronized log files were compared to those with synchronized log files by means of a 3D gamma-analysis (1 mm, 1%) and the evaluation of absolute dose differences. Results The induced characteristic interplay patterns on the films were well reproduced by the 4D dose reconstruction with 2D gamma-pass rates >= 95% for almost all cases with motion magnitude

    Evaluation of continuous beam rescanning versus pulsed beam in pencil beam scanned proton therapy for lung tumours

    Get PDF
    The treatment of moving targets with pencil beam scanned proton therapy (PBS-PT) may rely on rescanning strategies to smooth out motion induced dosimetric disturbances. PBS-PT machines, such as Proteus (R) Plus (PPlus) and Proteus (R) One (POne), deliver a continuous or a pulsed beam, respectively. In PPlus, scaled (or no) rescanning can be applied, while POne implies intrinsic 'rescanning' due to its pulsed delivery. We investigated the efficacy of these PBS-PT delivery types for the treatment of lung tumours. In general, clinically acceptable plans were achieved, and PPlus and POne showed similar effectiveness

    Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation

    Get PDF
    PURPOSE: Pencil beam scanned proton therapy (PBS-PT) treatment quality might be compromised by interplay and motion effects. Via fraction-wise reconstruction of 4D dose distributions and dose accumulation, we assess the clinical relevance of motion related target dose degradation in thoracic cancer patients. METHODS AND MATERIALS: For the ten thoracic patients (Hodgkin lymphoma and non-small cell lung cancer) treated at our proton therapy facility, daily breathing pattern records, treatment delivery log-files and weekly repeated 4DCTs were collected. Patients exhibited point-max target motion of up to 20 mm. They received robustly optimized treatment plans, delivered with five-times rescanning in fractionated regimen. Treatment delivery records were used to reconstruct 4D dose distributions and the accumulated treatment course dose per patient. Fraction-wise target dose degradations were analyzed and the accumulated treatment course dose, representing an estimation of the delivered dose, was compared with the prescribed dose. RESULTS: No clinically relevant loss of target dose homogeneity was found in the fraction-wise reconstructed 4D dose distributions. Overall, in 97% of all reconstructed fraction doses, D98 remained within 5% from the prescription dose. The V95 of accumulated treatment course doses was higher than 99.7% for all ten patients. CONCLUSIONS: 4D dose reconstruction and accumulation enables the clinical estimation of actual exhibited interplay and motion effects. In the patients considered here, the loss of homogeneity caused by interplay and organ motion did not show systematic pattern and smeared out throughout the course of fractionated PBS-PT treatment. Dose degradation due to anatomical changes showed to be more severe and triggered treatment adaptations for five patients

    Assessment of range uncertainty in lung-like tissue using a porcine lung phantom and proton radiography

    Get PDF
    Thoracic tumours are increasingly considered indications for pencil beam scanned proton therapy (PBS-PT) treatments. Conservative robustness settings have been suggested due to potential range straggling effects caused by the lung micro-structure. Using proton radiography (PR) and a 4D porcine lung phantom, we experimentally assess range errors to be considered in robust treatment planning for thoracic indications. A human-chest-size 4D phantom hosting inflatable porcine lungs and corresponding 4D computed tomography (4DCT) were used. Five PR frames were planned to intersect the phantom at various positions. Integral depth-dose curves (IDDs) per proton spot were measured using a multi-layer ionisation chamber (MLIC). Each PR frame consisted of 81 spots with an assigned energy of 210 MeV (full width at half maximum (FWHM) 8.2 mm). Each frame was delivered five times while simultaneously acquiring the breathing signal of the 4D phantom, using an ANZAI load cell. The synchronised ANZAI and delivery log file information was used to retrospectively sort spots into their corresponding breathing phase. Based on this information, IDDs were simulated by the treatment planning system (TPS) Monte Carlo dose engine on a dose grid of 1 mm. In addition to the time-resolved TPS calculations on the 4DCT phases, IDDs were calculated on the average CT. Measured IDDs were compared with simulated ones, calculating the range error for each individual spot. In total, 2025 proton spots were individually measured and analysed. The range error of a specific spot is reported relative to its water equivalent path length (WEPL). The mean relative range error was 1.2% (1.5 SD 2.3 %) for the comparison with the time-resolved TPS calculations, and 1.0% (1.5 SD 2.2 %) when comparing to TPS calculations on the average CT. The determined mean relative range errors justify the use of 3% range uncertainty for robust treatment planning in a clinical setting for thoracic indications

    Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy

    Get PDF
    In-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hamper dose calculation accuracy and make corrections of CBCTs a necessity. This study compared three methods to correct CBCTs and create synthetic CTs that are suitable for proton dose calculations. CBCTs, planning CTs and repeated CTs (rCT) from 33 H&N cancer patients were used to compare a deep convolutional neural network (DCNN), deformable image registration (DIR) and an analytical image-based correction method (AIC) for synthetic CT (sCT) generation. Image quality of sCTs was evaluated by comparison with a same-day rCT, using mean absolute error (MAE), mean error (ME), Dice similarity coefficient (DSC), structural non-uniformity (SNU) and signal/contrast-to-noise ratios (SNR/CNR) as metrics. Dosimetric accuracy was investigated in an intracranial setting by performing gamma analysis and calculating range shifts. Neural network-based sCTs resulted in the lowest MAE and ME (37/2 HU) and the highest DSC (0.96). While DIR and AIC generated images with a MAE of 44/77 HU, a ME of -8/1 HU and a DSC of 0.94/0.90. Gamma and range shift analysis showed almost no dosimetric difference between DCNN and DIR based sCTs. The lower image quality of AIC based sCTs affected dosimetric accuracy and resulted in lower pass ratios and higher range shifts. Patient-specific differences highlighted the advantages and disadvantages of each method. For the set of patients, the DCNN created synthetic CTs with the highest image quality. Accurate proton dose calculations were achieved by both DCNN and DIR based sCTs. The AIC method resulted in lower image quality and dose calculation accuracy was reduced compared to the other methods
    corecore