590 research outputs found
Physical Activity and Fall Prevention in Older Adults, an Educational Intervention
Falls in adults over 65 years of age constitute a significant health burden in our country, and this age group is growing rapidly. Falls are addressed with a multifactorial approach, addressing comorbidities, medications, and the physical environment, however, an effective point of intervention accessible by most older adults is physical activity. A brief educational presentation about the morbidity and mortality associated with falls, and the protective effects of physical activity, was provided to Meadowbrook Healthcare subacute nursing home residents in Plattsburgh, NY. Questions were encouraged and answered afterwards, and copies of the presentation were left for the residents to review in hopes of increasing motivation to participate in the Meadowbrook Healthcare rehabilitative classes and exercises.https://scholarworks.uvm.edu/fmclerk/1420/thumbnail.jp
Detection of the Entropy of the Intergalactic Medium: Accretion Shocks in Clusters, Adiabatic Cores in Groups
The thermodynamics of the diffuse, X-ray emitting gas in clusters of galaxies
is linked to the entropy level of the intra cluster medium. In particular,
models that successfully reproduce the properties of local X-ray clusters and
groups require the presence of a minimum value for the entropy in the center of
X-ray halos. Such a minimum entropy is most likely generated by
non-gravitational processes, in order to produce the observed break in
self-similarity of the scaling relations of X-ray halos. At present there is no
consensus on the level, the source or the time evolution of this excess
entropy. In this paper we describe a strategy to investigate the physics of the
heating processes acting in groups and clusters. We show that the best way to
extract information from the local data is the observation of the entropy
profile at large radii in nearby X-ray halos (z~0.1), both at the upper and
lower extremes of the cluster mass scale. The spatially and spectrally resolved
observation of such X-ray halos provides information on the mechanism of the
heating. We demonstrate how measurements of the size of constant entropy
(adiabatic) cores in clusters and groups can directly constrain heating models,
and the minimum entropy value. We also consider two specific experiments: the
detection of the shock fronts expected at the virial boundary of rich clusters,
and the detection of the isentropic, low surface-brightness emission extending
to radii larger than the virial ones in low mass clusters and groups. Such
observations will be a crucial probe of both the physics of clusters and the
relationship of non-gravitational processes to the thermodynamics of the
intergalactic medium.Comment: ApJ accepted, 31 pages including 8 figures. Important material added;
references update
Nutrition Knowledge Assessment of Lund Family Center Residents
Introduction. Staff at the Lund Family Center report that there may be knowledge deficits, with regards to nutrition, among the Centerâs residentsâprimarily pregnant/ parenting women with substance abuse and mental health issues. Before considering intervention options, we wanted to identify the specifics of the residentsâ knowledge gaps.
Methods. We administered paper versions of a revised General Nutrition Knowledge Questionnaire (GNKQ-R) Section 2 to 21 Lund residents to explore nutri- tion knowledge as compared to groups more representative of the general population. The GNKQ-R Section 2 is an externally validated, efficacious tool that specifically as- sesses knowledge of food groups and nutrients. Demographic data and free-response personal assessments of health were also collected.
Results. The study population scored significantly lower than a UK population (p=0.002) previously analyzed using the questionnaire, however, the Lund residents scored significantly higher than a CA population (p=0.0001). There were statistically insignificant positive relationships between age, education level, and self-reported health status, in addition to slightly lower performances among those with âSingleâ relationship status.
Conclusions. Though demonstrated by a small, homogenous population, the statistically significant nutrition knowledge deficit of the Lund Family Center residents, relative to the referenced UK study, warranted intervention. A brief nutrition curriculum composed of 16 focused modules was developed for future administration. The modules were oriented towards family nutrition, with content including such topics as breastfeeding advice, including children in meal-making, and macronutrient basics. These modules will be delivered to Lund residents in 2018.https://scholarworks.uvm.edu/comphp_gallery/1261/thumbnail.jp
Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression
Motivation: Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps. Results: We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells. Availability and implementation: EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations)
Comparison of Marine Spatial Planning Methods in Madagascar Demonstrates Value of Alternative Approaches
The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the âstrict protectionâ class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals
The Polygenic and Monogenic Basis of Blood Traits and Diseases
Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
Measuring the availability of human resources for health and its relationship to universal health coverage for 204 countries and territories from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: Human resources for health (HRH) include a range of occupations that aim to promote or improve human health. The UN Sustainable Development Goals (SDGs) and the WHO Health Workforce 2030 strategy have drawn attention to the importance of HRH for achieving policy priorities such as universal health coverage (UHC). Although previous research has found substantial global disparities in HRH, the absence of comparable cross-national estimates of existing workforces has hindered efforts to quantify workforce requirements to meet health system goals. We aimed to use comparable and standardised data sources to estimate HRH densities globally, and to examine the relationship between a subset of HRH cadres and UHC effective coverage performance.
Methods: Through the International Labour Organization and Global Health Data Exchange databases, we identified 1404 country-years of data from labour force surveys and 69 country-years of census data, with detailed microdata on health-related employment. From the WHO National Health Workforce Accounts, we identified 2950 country-years of data. We mapped data from all occupational coding systems to the International Standard Classification of Occupations 1988 (ISCO-88), allowing for standardised estimation of densities for 16 categories of health workers across the full time series. Using data from 1990 to 2019 for 196 of 204 countries and territories, covering seven Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) super-regions and 21 regions, we applied spatiotemporal Gaussian process regression (ST-GPR) to model HRH densities from 1990 to 2019 for all countries and territories. We used stochastic frontier meta-regression to model the relationship between the UHC effective coverage index and densities for the four categories of health workers enumerated in SDG indicator 3.c.1 pertaining to HRH: physicians, nurses and midwives, dentistry personnel, and pharmaceutical personnel. We identified minimum workforce density thresholds required to meet a specified target of 80 out of 100 on the UHC effective coverage index, and quantified national shortages with respect to those minimum thresholds.
Findings: We estimated that, in 2019, the world had 104·0 million (95% uncertainty interval 83·5â128·0) health workers, including 12·8 million (9·7â16·6) physicians, 29·8 million (23·3â37·7) nurses and midwives, 4·6 million (3·6â6·0) dentistry personnel, and 5·2 million (4·0â6·7) pharmaceutical personnel. We calculated a global physician density of 16·7 (12·6â21·6) per 10â000 population, and a nurse and midwife density of 38·6 (30·1â48·8) per 10â000 population. We found the GBD super-regions of sub-Saharan Africa, south Asia, and north Africa and the Middle East had the lowest HRH densities. To reach 80 out of 100 on the UHC effective coverage index, we estimated that, per 10â000 population, at least 20·7 physicians, 70·6 nurses and midwives, 8·2 dentistry personnel, and 9·4 pharmaceutical personnel would be needed. In total, the 2019 national health workforces fell short of these minimum thresholds by 6·4 million physicians, 30·6 million nurses and midwives, 3·3 million dentistry personnel, and 2·9 million pharmaceutical personnel.
Interpretation: Considerable expansion of the world's health workforce is needed to achieve high levels of UHC effective coverage. The largest shortages are in low-income settings, highlighting the need for increased financing and coordination to train, employ, and retain human resources in the health sector. Actual HRH shortages might be larger than estimated because minimum thresholds for each cadre of health workers are benchmarked on health systems that most efficiently translate human resources into UHC attainment
Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990â2019 : A systematic analysis for the Global Burden of Disease Study 2019
Background
Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages.
Methods
Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (â„65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0â100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion targetâ1 billion more people benefiting from UHC by 2023âwe estimated additional population equivalents with UHC effective coverage from 2018 to 2023.
Findings
Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2â47·5) in 1990 to 60·3 (58·7â61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9â3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010â2019 relative to 1990â2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6â421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0â3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5â1040·3]) residing in south Asia.
Interpretation
The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all peopleâthe ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how closeâor how farâall populations are in benefiting from UHC
Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990â2019: a systematic analysis for the Global Burden of Disease Study 2019
Background
Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages.
Methods
Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (â„65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0â100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion targetâ1 billion more people benefiting from UHC by 2023âwe estimated additional population equivalents with UHC effective coverage from 2018 to 2023.
Findings
Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2â47·5) in 1990 to 60·3 (58·7â61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9â3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010â2019 relative to 1990â2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6â421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0â3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5â1040·3]) residing in south Asia.
Interpretation
The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all peopleâthe ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how closeâor how farâall populations are in benefiting from UHC
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10â14 and 50â54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66â2·79) in 2000 to 2·31 (2·17â2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5â137·8) in 2000 to a peak of 139·6 million (133·0â146·9) in 2016. Global livebirths then declined to 135·3 million (127·2â144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4â27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8â67·6) in 2000 to 73·5 years (72·8â74·3) in 2019. The total number of deaths increased from 50·7 million (49·5â51·9) in 2000 to 56·5 million (53·7â59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1â10·3) in 2000 to 5·0 million (4·3â6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0â6·3) in 2000 to 7·7 billion (7·5â8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1â60·8) in 2000 to 63·5 years (60·8â66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
- âŠ