2 research outputs found

    Evaluating the usability and security of a video CAPTCHA

    Get PDF
    A CAPTCHA is a variation of the Turing test, in which a challenge is used to distinguish humans from computers (`bots\u27) on the internet. They are commonly used to prevent the abuse of online services. CAPTCHAs discriminate using hard articial intelligence problems: the most common type requires a user to transcribe distorted characters displayed within a noisy image. Unfortunately, many users and them frustrating and break rates as high as 60% have been reported (for Microsoft\u27s Hotmail). We present a new CAPTCHA in which users provide three words (`tags\u27) that describe a video. A challenge is passed if a user\u27s tag belongs to a set of automatically generated ground-truth tags. In an experiment, we were able to increase human pass rates for our video CAPTCHAs from 69.7% to 90.2% (184 participants over 20 videos). Under the same conditions, the pass rate for an attack submitting the three most frequent tags (estimated over 86,368 videos) remained nearly constant (5% over the 20 videos, roughly 12.9% over a separate sample of 5146 videos). Challenge videos were taken from YouTube.com. For each video, 90 tags were added from related videos to the ground-truth set; security was maintained by pruning all tags with a frequency 0.6%. Tag stemming and approximate matching were also used to increase human pass rates. Only 20.1% of participants preferred text-based CAPTCHAs, while 58.2% preferred our video-based alternative. Finally, we demonstrate how our technique for extending the ground truth tags allows for different usability/security trade-offs, and discuss how it can be applied to other types of CAPTCHAs

    Video CAPTCHAs: Usability vs. Security

    Get PDF
    A Completely Automated Public Turing test to tell Computer and Humans Apart (CAPTCHA) is a variation of the Turing test, in which a challenge is used to distinguish humans from computers (‘bots’) on the internet. They are commonly used to prevent the abuse of online services; for example, malicious users have written automated programs that sign up for thousands of free email accounts and send SPAM messages. A number of hard artificial intelligence problems, including natural language processing, speech recognition, character recognition, and image understanding, have been used as the basis for these challenges on the expectation that humans will outperform bots. The most common type of CAPTCHA requires a user to transcribe distorted characters displayed within a noisy image. Unfortunately, many users find CAPTCHAs based on character-recognition frustrating and attack success rates as high as 60% have been reported for Microsoft’s Hotmail CAPTCHA [8].To address these problems, we present a first attempt at using content-based video labeling (‘tagging’) as a the basis for a CAPTCHA
    corecore