3,959 research outputs found
Can Self-Organizing Maps accurately predict photometric redshifts?
We present an unsupervised machine learning approach that can be employed for
estimating photometric redshifts. The proposed method is based on a vector
quantization approach called Self--Organizing Mapping (SOM). A variety of
photometrically derived input values were utilized from the Sloan Digital Sky
Survey's Main Galaxy Sample, Luminous Red Galaxy, and Quasar samples along with
the PHAT0 data set from the PHoto-z Accuracy Testing project. Regression
results obtained with this new approach were evaluated in terms of root mean
square error (RMSE) to estimate the accuracy of the photometric redshift
estimates. The results demonstrate competitive RMSE and outlier percentages
when compared with several other popular approaches such as Artificial Neural
Networks and Gaussian Process Regression. SOM RMSE--results (using
z=z--z) for the Main Galaxy Sample are 0.023, for the
Luminous Red Galaxy sample 0.027, Quasars are 0.418, and PHAT0 synthetic data
are 0.022. The results demonstrate that there are non--unique solutions for
estimating SOM RMSEs. Further research is needed in order to find more robust
estimation techniques using SOMs, but the results herein are a positive
indication of their capabilities when compared with other well-known methods.Comment: 5 pages, 3 figures, submitted to PAS
Near-infrared polarimetric observations of the afterglow of GRB 000301C
Based on near-infrared polarimetric observations we constrain the degree of
linear polarization of the afterglow light of GRB 000301C to less than 30% 1.8
days after the burst.Comment: To appear in: Proc. 20th Texas Symposium on Relativistic
Astrophysics, eds. J. C. Wheeler and H. Marte
Numerical Investigation of Light Scattering off Split-Ring Resonators
Recently, split ring-resonators (SRR's) have been realized experimentally in
the near infrared (NIR) and optical regime. In this contribution we numerically
investigate light propagation through an array of metallic SRR's in the NIR and
optical regime and compare our results to experimental results.
We find numerical solutions to the time-harmonic Maxwell's equations by using
advanced finite-element-methods (FEM). The geometry of the problem is
discretized with unstructured tetrahedral meshes. Higher order, vectorial
elements (edge elements) are used as ansatz functions. Transparent boundary
conditions and periodic boundary conditions are implemented, which allow to
treat light scattering problems off periodic structures.
This simulation tool enables us to obtain transmission and reflection spectra
of plane waves which are incident onto the SRR array under arbitrary angles of
incidence, with arbitrary polarization, and with arbitrary
wavelength-dependencies of the permittivity tensor. We compare the computed
spectra to experimental results and investigate resonances of the system.Comment: 9 pages, 8 figures (see original publication for images with a better
resolution
Long Term Financial Impacts of Drought Management Strategies
This paper analyzes the financial implications of drought management strategies for a model ranch in South Texas. The 2006 drought that affected Texas livestock producers left many cattlemen asking the age old question, "Should I cull to reduce my herd size or purchase feed to maintain my current herd".Livestock Production/Industries,
Modeling of stress-strain state of cement-sand grouting on foundation deformation
The application of jet grouting has been becoming more widespread in the reinforcement of building foundations. This technique depends on the characteristic features of the foundation soil, relevant type of foundation and surrounding conditions. The numerical analysis was carried out with three typical load intensities, proving that the intensity of the foundation settlement being influenced by the growth of soil stiffness and strength. The calculation of vertical soil displacements is 7.9 mm before underpinning, while it is 6.5 mm after underpinning. It is defined that the use of jet structures to strengthen the ground base allows to increase the rigidity of the base and to reduce its vertical movement by 20%. The hypothetical displacements were identified of the base by varying of its mechanical properties to the optimal values
On the Hopf algebra structure of the AdS/CFT S-matrix
We formulate the Hopf algebra underlying the su(2|2) worldsheet S-matrix of
the AdS_5 x S^5 string in the AdS/CFT correspondence. For this we extend the
previous construction in the su(1|2) subsector due to Janik to the full algebra
by specifying the action of the coproduct and the antipode on the remaining
generators. The nontriviality of the coproduct is determined by length-changing
effects and results in an unusual central braiding. As an application we
explicitly determine the antiparticle representation by means of the
established antipode.Comment: 12 pages, no figures, minor changes, typos corrected, comments and
references added, v3: three references adde
Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy
Mid-infrared femtosecond optical frequency combs were produced by difference
frequency generation of the spectral components of a near-infrared comb in a
3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB
parametric gain in the 1.5 \mu m signal, which yields powers above 500 mW (3
\mu W/mode) in the idler with spectra covering 2.8 \mu m to 3.5 \mu m.
Potential for broadband, high-resolution molecular spectroscopy is demonstrated
by absorption spectra and interferograms obtained by heterodyning two combs.Comment: 11 pages, 8 figure
- …