228 research outputs found
Laboratory observation of a nonlinear interaction between shear Alfv\'{e}n waves
An experimental investigation of nonlinear interactions between shear
Alfv\'{e}n waves in a laboratory plasma is presented. Two Alfv\'{e}n waves,
generated by a resonant cavity, are observed to beat together, driving a low
frequency nonlinear psuedo-mode at the beat frequency. The psuedo-mode then
scatters the Alfv\'{e}n waves, generating a series of sidebands. The observed
interaction is very strong, with the normalized amplitude of the driven
psuedo-mode comparable to the normalized magnetic field amplitude () of the interacting Alfv\'{e}n waves.Comment: 10 pages, 4 figures, submitted to Phys. Rev. Let
Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations
Abstract Simulations from our newly expanded ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB), now valid out to 9 R E, are compared for the first time with Van Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion Spectrometer (MagEIS) observations of the trapped high-energy (\u3e50 keV) ion flux; however, it underestimates the low-energy (\u3c10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal plasma (ECT) suite at high (\u3e20 keV) energy are better reproduced using a high-resolution convection model. In agreement with Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations, RAM-SCB indicates that the large-scale magnetic field is depressed as close as ∼4.5 RE during even a moderate storm. Regions of electromagnetic ion cyclotron instability are predicted on the duskside from ∼6 to ∼9 RE, indicating that previous studies confined to geosynchronous orbit may have underestimated their scattering effect on the energetic particles. Key Points Expanded RAM-SCB model reproduces well high-energy (\u3e50 keV) MagEIS observations The magnetic field is depressed as close as ∼4.5 RE during even a moderate storm EMIC wave growth extends on duskside from ∼6 to ∼9 RE during storm main phase
Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations
Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs
Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by Radiation Belt Storm Probes and Time History of Events and Macroscale Interactions during Substorms satellites and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L \u3e 6.07 over about 6 h, with up to 4 orders of magnitude enhancement in the 30 keV to 5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (∼0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60%-80% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 h. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale. Key Points Rapid outward extension of electron radiation belt observed by RBSP and THEMIS A two-step scenario to explain the rapid flux enchantment Differentiating between contributions of substorm injections and chorus waves
The trapping of equatorial magnetosonic waves in the Earth’s outer plasmasphere
Abstract We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\u27s plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosonic wave event, we demonstrate that magnetosonic waves can also be trapped within local density structures. We suggest that perpendicular wave propagation is important for explaining the presence of magnetosonic waves in the Earth\u27s plasmasphere at locations away from the generation region. Key Points Magnetosonic waves are excited by ion ring distributions near the plasmapauseMagnetosonic waves are trapped in a limited radial region in the plasmasphereMagnetosonic waves are modulated by local density structures
- …