10 research outputs found

    NOTCH1, SF3B1 and TP53 Mutations in Fludarabine-Refractory CLL Patients Treated with Alemtuzumab: Results From the CLL2H Trial of the Gcllsg

    No full text
    Key Points In the refractory cohort of the CLL2H trial PFS was significantly longer in patients with NOTCH1 mutation. SF3B1 mutation had no impact on response rates or survival times in fludarabine-refractory patients.</jats:p

    Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial

    No full text
    Mutations in TP53, NOTCH1, and SF3B1 were analyzed in the CLL8 study evaluating first-line therapy with fludarabine and cyclophosphamide (FC) or FC with rituximab(FCR) among patients with untreated chronic lymphocytic leukemia (CLL). TP53, NOTCH1, and SF3B1 were mutated in 11.5%, 10.0%, and 18.4% of patients, respectively. NOTCH1(mut) and SF3B1(mut) virtually showed mutual exclusivity (0.6% concurrence), but TP53(mut) was frequently found in NOTCH1(mut) (16.1%) and in SF3B1(mut) (14.0%) patients. There were few significant associations with clinical and laboratory characteristics, but genetic markers had a strong influence on response and survival. In multivariable analyses, an independent prognostic impact was found for FCR, thymidine kinase (TK) >= 10 U/L, unmutated IGHV, 11q deletion, 17p deletion, TP53(mut), and SF3B1(mut) on progression-free survival; and for FCR, age >= 65 years, Eastern Cooperative Oncology Group performance status >= 1, beta 2-microglobulin >= 3.5 mg/L, TK >= 10 U/L, unmutated IGHV, 17p deletion, and TP53(mut) on overall survival. Notably, predictive marker analysis identified an interaction of NOTCH1 mutational status and treatment in that rituximab failed to improve response and survival in patients with NOTCH1(mut). In conclusion, TP53 and SF3B1 mutations appear among the strongest prognostic markers in CLL patients receiving current-standard first-line therapy. NOTCH1(mut) was identified as a predictive marker for decreased benefit from the addition of rituximab to FC. This study is registered at www.clinicaltrials.gov as #NCT00281918

    Mutations driving CLL and their evolution in progression and relapse

    No full text
    SUMMARY Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and therapy are central questions in cancer biology. We identify 44 recurrently mutated genes and 11 recurrent somatic copy number variations through whole-exome sequencing of 538 chronic lymphocytic leukemia (CLL) and matched germline DNA samples, 278 of which were collected in a prospective clinical trial. These include previously unrecognized cancer drivers (RPS15, IKZF3) and collectively identify RNA processing and export, MYC activity and MAPK signaling as central pathways involved in CLL. Clonality analysis of this large dataset further enabled reconstruction of temporal relationships between driver events. Direct comparison between matched pre-treatment and relapse samples from 59 patients demonstrated highly frequent clonal evolution. Thus, large sequencing datasets of clinically informative samples enable the discovery of novel cancer genes and the network of relationships between the driver events and their impact on disease relapse and clinical outcome
    corecore