9 research outputs found

    Human Cardiomyocyte Progenitor Cells in Co-culture with Rat Cardiomyocytes Form a Pro-arrhythmic Substrate: Evidence for Two Different Arrhythmogenic Mechanisms

    Full text link
    Background: Cardiomyocyte progenitor cells (CMPCs) are a promising cell source for regenerative cell therapy to improve cardiac function after myocardial infarction. However, it is unknown whether undifferentiated CMPCs have arrhythmogenic risks. We investigate whether undifferentiated, regionally applied, human fetal CMPCs form a pro-arrhythmic substrate in co-culture with neonatal rat ventricular myocytes (NRVMs). Method: Unipolar extracellular electrograms, derived from micro-electrode arrays (8 × 8 electrodes) containing monolayers of NRVMs (control), or co-cultures of NRVMs and locally seeded CMPCs were used to determine conduction velocity and the incidence of tachy-arrhythmias. Micro-electrodes were used to record action potentials. Conditioned medium (Cme) of CMPCs was used to distinguish between coupling or paracrine effects. Results: Co-cultures demonstrated conduction slowing (5.6 ± 0.3 cm/s, n = 50) compared to control monolayers (13.4 ± 0.4 cm/s, n = 26) and monolayers subjected to Cme (13.7 ± 0.6 cm/s, n = 11, all p < 0.001). Furthermore, co-cultures had a more depolarized resting membrane than control monolayers (-47.3 ± 17.4 vs. -64.8 ± 7.7 mV, p < 0.001) and monolayers subjected to Cme (-64.4 ± 8.1 mV, p < 0.001). Upstroke velocity was significantly decreased in co-cultures and action potential duration was prolonged. The CMPC region was characterized by local ST-elevation in the recorded electrograms. The spontaneous rhythm was faster and tachy-arrhythmias occurred more often in co-cultured monolayers than in control monolayers (42.0 vs. 5.4%, p < 0.001). Conclusion: CMPCs form a pro-arrhythmic substrate when co-cultured with neonatal cardiomyocytes. Electrical coupling between both cell types leads to current flow between a, slowly conducting, depolarized and the normal region leading to local ST-elevations and the occurrence of tachy-arrhythmias originating from the non-depolarized zon

    Toward Biological Pacing by Cellular Delivery of Hcn2/SkM1

    Full text link
    Electronic pacemakers still face major shortcomings that are largely intrinsic to their hardware-based design. Radical improvements can potentially be generated by gene or cell therapy-based biological pacemakers. Our previous work identified adenoviral gene transfer of Hcn2 and SkM1, encoding a "funny current" and skeletal fast sodium current, respectively, as a potent combination to induce short-term biological pacing in dogs with atrioventricular block. To achieve long-term biological pacemaker activity, alternative delivery platforms need to be explored and optimized. The aim of the present study was therefore to investigate the functional delivery of Hcn2/SkM1 via human cardiomyocyte progenitor cells (CPCs). Nucleofection of Hcn2 and SkM1 in CPCs was optimized and gene transfer was determined for Hcn2 and SkM1 in vitro. The modified CPCs were analyzed using patch-clamp for validation and characterization of functional transgene expression. In addition, biophysical properties of Hcn2 and SkM1 were further investigated in lentivirally transduced CPCs by patch-clamp analysis. To compare both modification methods in vivo, CPCs were nucleofected or lentivirally transduced with GFP and injected in the left ventricle of male NOD-SCID mice. After 1 week, hearts were collected and analyzed for GFP expression and cell engraftment. Subsequent functional studies were carried out by computational modeling. Both nucleofection and lentiviral transduction of CPCs resulted in functional gene transfer of Hcn2 and SkM1 channels. However, lentiviral transduction was more efficient than nucleofection-mediated gene transfer and the virally transduced cells survived better in vivo. These data support future use of lentiviral transduction over nucleofection, concerning CPC-based cardiac gene delivery. Detailed patch-clamp studies revealed Hcn2 and Skm1 current kinetics within the range of previously reported values of other cell systems. Finally, computational modeling indicated that CPC-mediated delivery of Hcn2/SkM1 can generate stable pacemaker function in human ventricular myocytes. These modeling studies further illustrated that SkM1 plays an essential role in the final stage of diastolic depolarization, thereby enhancing biological pacemaker functioning delivered by Hcn2. Altogether these studies support further development of CPC-mediated delivery of Hcn2/SkM1 and functional testing in bradycardia models

    Toward Biological Pacing by Cellular Delivery of Hcn2/SkM1

    Full text link
    Electronic pacemakers still face major shortcomings that are largely intrinsic to their hardware-based design. Radical improvements can potentially be generated by gene or cell therapy-based biological pacemakers. Our previous work identified adenoviral gene transfer of Hcn2 and SkM1, encoding a “funny current” and skeletal fast sodium current, respectively, as a potent combination to induce short-term biological pacing in dogs with atrioventricular block. To achieve long-term biological pacemaker activity, alternative delivery platforms need to be explored and optimized. The aim of the present study was therefore to investigate the functional delivery of Hcn2/SkM1 via human cardiomyocyte progenitor cells (CPCs). Nucleofection of Hcn2 and SkM1 in CPCs was optimized and gene transfer was determined for Hcn2 and SkM1 in vitro. The modified CPCs were analyzed using patch-clamp for validation and characterization of functional transgene expression. In addition, biophysical properties of Hcn2 and SkM1 were further investigated in lentivirally transduced CPCs by patch-clamp analysis. To compare both modification methods in vivo, CPCs were nucleofected or lentivirally transduced with GFP and injected in the left ventricle of male NOD-SCID mice. After 1 week, hearts were collected and analyzed for GFP expression and cell engraftment. Subsequent functional studies were carried out by computational modeling. Both nucleofection and lentiviral transduction of CPCs resulted in functional gene transfer of Hcn2 and SkM1 channels. However, lentiviral transduction was more efficient than nucleofection-mediated gene transfer and the virally transduced cells survived better in vivo. These data support future use of lentiviral transduction over nucleofection, concerning CPC-based cardiac gene delivery. Detailed patch-clamp studies revealed Hcn2 and Skm1 current kinetics within the range of previously reported values of other cell systems. Finally, computational modeling indicated that CPC-mediated delivery of Hcn2/SkM1 can generate stable pacemaker function in human ventricular myocytes. These modeling studies further illustrated that SkM1 plays an essential role in the final stage of diastolic depolarization, thereby enhancing biological pacemaker functioning delivered by Hcn2. Altogether these studies support further development of CPC-mediated delivery of Hcn2/SkM1 and functional testing in bradycardia models

    Supraventricular tachycardias, conduction disease, and cardiomyopathy in 3 families with the same rare variant in TNNI3K (p.Glu768Lys)

    Full text link
    Background: Rare genetic variants in TNNI3K encoding troponin-I interacting kinase have been linked to a distinct syndrome consisting primarily of supraventricular tachycardias and variably expressed conduction disturbance and dilated cardiomyopathy in 2 families. Objective: The purpose of this study was to identify new genetic variants associated with inherited supraventricular tachycardias, cardiac conduction disease, and cardiomyopathy. Methods: We conducted next generation sequencing in 3 independent multigenerational families with atrial/junctional tachycardia with or without conduction disturbance, dilated cardiomyopathy, and sudden death. We also assessed the effect of identified variant on protein autophosphorylation. Results: In this study, we uncovered the same ultra-rare genetic variant in TNNI3K (c.2302G>A, p.Glu768Lys), which co-segregated with disease features in all affected individuals (n = 23) from all 3 families. TNNI3K harboring the TNNI3K-p.Glu768Lys variant displayed enhanced kinase activity, in line with expectations from previous mouse studies that demonstrated increased conduction indices and procardiomyopathic effects with increased levels of Tnni3k. Conclusion: This study corroborates further the causal link between rare genetic variation in TNNI3K and this distinct complex phenotype, and points to enhanced kinase activity of TNNI3K as the underlying pathobiological mechanism

    Cardiomyocyte progenitor cells as a functional gene delivery vehicle for long-term biological pacing

    Full text link
    Sustained pacemaker function is a challenge in biological pacemaker engineering. Human cardiomyocyte progenitor cells (CMPCs) have exhibited extended survival in the heart after transplantation. We studied whether lentivirally transduced CMPCs that express the pacemaker current If (encoded by HCN4) can be used as functional gene delivery vehicle in biological pacing. Human CMPCs were isolated from fetal hearts using magnetic beads coated with Sca-1 antibody, cultured in nondifferentiating conditions, and transduced with a green fluorescent protein (GFP)- or HCN4-GFP-expressing lentivirus. A patch-clamp analysis showed a large hyperpolarization-activated, time-dependent inward current (−20 pA/pF at −140 mV, n = 14) with properties typical of If in HCN4-GFP-expressing CMPCs. Gap-junctional coupling between CMPCs and neonatal rat ventricular myocytes (NRVMs) was demonstrated by efficient dye transfer and changes in spontaneous beating activity. In organ explant cultures, the number of preparations showing spontaneous beating activity increased from 6.3% in CMPC/GFP-injected preparations to 68.2% in CMPC/HCN4-GFP-injected preparations (P < 0.05). Furthermore, in CMPC/HCN4-GFP-injected preparations, isoproterenol induced a significant reduction in cycle lengths from 648 ± 169 to 392 ± 71 ms (P < 0.05). In sum, CMPCs expressing HCN4-GFP functionally couple to NRVMs and induce physiologically controlled pacemaker activity and may therefore provide an attractive delivery platform for sustained pacemaker function

    Cardiomyocyte progenitor cells as a functional gene delivery vehicle for long-term biological pacing

    Full text link
    Sustained pacemaker function is a challenge in biological pacemaker engineering. Human cardiomyocyte progenitor cells (CMPCs) have exhibited extended survival in the heart after transplantation. We studied whether lentivirally transduced CMPCs that express the pacemaker current If (encoded by HCN4) can be used as functional gene delivery vehicle in biological pacing. Human CMPCs were isolated from fetal hearts using magnetic beads coated with Sca-1 antibody, cultured in nondifferentiating conditions, and transduced with a green fluorescent protein (GFP)- or HCN4-GFP-expressing lentivirus. A patch-clamp analysis showed a large hyperpolarization-activated, time-dependent inward current (−20 pA/pF at −140 mV, n = 14) with properties typical of If in HCN4-GFP-expressing CMPCs. Gap-junctional coupling between CMPCs and neonatal rat ventricular myocytes (NRVMs) was demonstrated by efficient dye transfer and changes in spontaneous beating activity. In organ explant cultures, the number of preparations showing spontaneous beating activity increased from 6.3% in CMPC/GFP-injected preparations to 68.2% in CMPC/HCN4-GFP-injected preparations (P < 0.05). Furthermore, in CMPC/HCN4-GFP-injected preparations, isoproterenol induced a significant reduction in cycle lengths from 648 ± 169 to 392 ± 71 ms (P < 0.05). In sum, CMPCs expressing HCN4-GFP functionally couple to NRVMs and induce physiologically controlled pacemaker activity and may therefore provide an attractive delivery platform for sustained pacemaker function

    Targeting the Microtubule EB1-CLASP2 Complex Modulates NaV1.5 at Intercalated Discs

    Get PDF
    Rationale: Loss-of-function of the cardiac sodium channel NaV1.5 causes conduction slowing and arrhythmias. NaV1.5 is differentially distributed within subcellular domains of cardiomyocytes, with sodium current (INa) being enriched at the intercalated discs (ID). Various pathophysiological conditions associated with lethal arrhythmias display ID-specific INareduction, but the mechanisms underlying microdomain-specific targeting of NaV1.5 remain largely unknown. Objective: To investigate the role of the microtubule plus-end tracking proteins EB1 (end-binding protein 1) and CLASP2 (cytoplasmic linker associated protein 2) in mediating NaV1.5 trafficking and subcellular distribution in cardiomyocytes. Methods and Results: EB1 overexpression in human-induced pluripotent stem cell-derived cardiomyocytes resulted in enhanced whole-cell INa, increased action potential upstroke velocity (Vmax), and enhanced NaV1.5 localization at the plasma membrane as detected by multicolor stochastic optical reconstruction microscopy. Fluorescence recovery after photobleaching experiments in HEK293A cells demonstrated that EB1 overexpression promoted NaV1.5 forward trafficking. Knockout of MAPRE1 in human induced pluripotent stem cell-derived cardiomyocytes led to reduced whole-cell INa, decreased Vmax, and action potential duration (APD) prolongation. Similarly, acute knockout of the MAPRE1 homolog in zebrafish (mapre1b) resulted in decreased ventricular conduction velocity and Vmaxas well as increased APD. Stochastic optical reconstruction microscopy imaging and macropatch INameasurements showed that subacute treatment (2-3 hours) with SB216763 (SB2), a GSK3ÎČ (glycogen synthase kinase 3ÎČ) inhibitor known to modulate CLASP2-EB1 interaction, reduced GSK3ÎČ localization and increased NaV1.5 and INapreferentially at the ID region of wild-type murine ventricular cardiomyocytes. By contrast, SB2 did not affect whole cell INaor NaV1.5 localization in cardiomyocytes from Clasp2-deficient mice, uncovering the crucial role of CLASP2 in SB2-mediated modulation of NaV1.5 at the ID. Conclusions: Our findings demonstrate the modulatory effect of the microtubule plus-end tracking protein EB1 on NaV1.5 trafficking and function, and identify the EB1-CLASP2 complex as a target for preferential modulation of INawithin the ID region of cardiomyocytes. Graphic Abstract: A graphic abstract is available for this article

    Targeting the Microtubule EB1-CLASP2 Complex Modulates NaV1.5 at Intercalated Discs

    Full text link
    Rationale: Loss-of-function of the cardiac sodium channel NaV1.5 causes conduction slowing and arrhythmias. NaV1.5 is differentially distributed within subcellular domains of cardiomyocytes, with sodium current (INa) being enriched at the intercalated discs (ID). Various pathophysiological conditions associated with lethal arrhythmias display ID-specific INareduction, but the mechanisms underlying microdomain-specific targeting of NaV1.5 remain largely unknown. Objective: To investigate the role of the microtubule plus-end tracking proteins EB1 (end-binding protein 1) and CLASP2 (cytoplasmic linker associated protein 2) in mediating NaV1.5 trafficking and subcellular distribution in cardiomyocytes. Methods and Results: EB1 overexpression in human-induced pluripotent stem cell-derived cardiomyocytes resulted in enhanced whole-cell INa, increased action potential upstroke velocity (Vmax), and enhanced NaV1.5 localization at the plasma membrane as detected by multicolor stochastic optical reconstruction microscopy. Fluorescence recovery after photobleaching experiments in HEK293A cells demonstrated that EB1 overexpression promoted NaV1.5 forward trafficking. Knockout of MAPRE1 in human induced pluripotent stem cell-derived cardiomyocytes led to reduced whole-cell INa, decreased Vmax, and action potential duration (APD) prolongation. Similarly, acute knockout of the MAPRE1 homolog in zebrafish (mapre1b) resulted in decreased ventricular conduction velocity and Vmaxas well as increased APD. Stochastic optical reconstruction microscopy imaging and macropatch INameasurements showed that subacute treatment (2-3 hours) with SB216763 (SB2), a GSK3ÎČ (glycogen synthase kinase 3ÎČ) inhibitor known to modulate CLASP2-EB1 interaction, reduced GSK3ÎČ localization and increased NaV1.5 and INapreferentially at the ID region of wild-type murine ventricular cardiomyocytes. By contrast, SB2 did not affect whole cell INaor NaV1.5 localization in cardiomyocytes from Clasp2-deficient mice, uncovering the crucial role of CLASP2 in SB2-mediated modulation of NaV1.5 at the ID. Conclusions: Our findings demonstrate the modulatory effect of the microtubule plus-end tracking protein EB1 on NaV1.5 trafficking and function, and identify the EB1-CLASP2 complex as a target for preferential modulation of INawithin the ID region of cardiomyocytes. Graphic Abstract: A graphic abstract is available for this article
    corecore