8 research outputs found
The Role of Finger Representations and Saccades for Number Processing: An fMRI Study in Children
A possible functional role of finger representations for the development of early numerical cognition has been the subject of recent debate; however, until now, only behavioral studies have directly supported this view. Working from recent models of number processing, we focused on the neural networks involved in numerical tasks and their relationship to the areas underlying finger representations and saccades in children aged 6–12 years. We were able to differentiate three parietal circuits that were related to distinct aspects of number processing. Abstract magnitude processing was subserved by an association area also activated by saccades and visually guided finger movements. Addition processes led to activation in an area only engaged during saccade encoding, whereas counting processes resulted in the activation of an area only activated during visually guided finger movements, namely in the anterior intraparietal sulcus. Apart from this area, a large network of specifically finger-related brain areas including the ventral precentral sulcus, supplementary motor area, dorso-lateral prefrontal cortex, insula, thalamus, midbrain, and cerebellum was activated during (particularly non-symbolic) exact addition but not during magnitude comparison. Moreover, a finger-related activation cluster in the right ventral precentral sulcus was only present during non-symbolic addition and magnitude comparison, but not during symbolic number processing tasks. We conclude that finger counting may critically mediate the step from non-symbolic to symbolic and exact number processing via somatosensory integration processes and therefore represents an important example of embodied cognition
The Influence of Implicit Hand-Based Representations on Mental Arithmetic
Recently, a strong functional relationship between finger counting and number processing has been suggested. It has been argued that bodily experiences such as finger counting may influence the structure of the basic mental representations of numbers even in adults. However, to date it remains unclear whether the structure of finger counting systems also influences educated adults’ performance in mental arithmetic. In the present study, we pursued this question by examining finger-based sub-base-five effects in an addition production task. With the standard effect of a carry operation (i.e., base-10 crossing) being replicated, we observed an additional sub-base-five effect such that crossing a sub-base-five boundary led to a relative response time increase. For the case of mental arithmetic sub-base-five effects have previously been reported only in children. However, it remains unclear whether finger-based numerical effects in mental arithmetic reflect an important but transitory step in the development of arithmetical skills. The current findings suggest that even in adults embodied representations such as finger counting patterns modulate arithmetic performance. Thus, they support the general idea that even seemingly abstract cognition in adults may at least partly be rooted in our bodily experiences
Multimodal Semantic Quantity Representations: Further Evidence from Korean Sign Language
Korean deaf signers performed a number comparison task on pairs of Arabic digits. In their response times profiles, the expected magnitude effect was systematically modified by properties of number signs in Korean sign language in a culture-specific way (not observed in hearing and deaf Germans or hearing Chinese). We conclude that finger-based quantity representations are automatically activated even in simple tasks with symbolic input although this may be irrelevant and even detrimental for task performance. These finger-based numerical representations are accessed in addition to another, more basic quantity system which is evidenced by the magnitude effect. In sum, these results are inconsistent with models assuming only one single amodal representation of numerical quantity
A Hand Full of Numbers: A Role for Offloading in Arithmetics Learning?
Finger counting has been associated to arithmetic learning in children. We examined children with (n = 14) and without (n = 84) mathematics learning difficulties with ages between 8 and 11 years. Deficits in finger gnosia were found in association to mathematical difficulties. Finger gnosia was particularly relevant for the performance in word problems requiring active manipulation of small magnitudes in the range between 1 and 10. Moreover, the deficits in finger gnosia could not be attributed to a shortage in working memory capacity but rather to a specific inability to use fingers to transiently represent magnitudes, tagging to be counted objects, and reducing the cognitive load necessary to solve arithmetic problems. Since finger gnosia was more related to symbolic than to non-symbolic magnitude processing, finger-related representation of magnitude seems to be an important link for learning the mapping of analog onto discrete symbolic magnitudes
Micro and macro pattern analyses of fMRI data support both early and late interaction of numerical and spatial information
Numbers and space are two semantic primitives that interact with each other. Both recruit brain regions along the dorsal pathway, notably parietal cortex. This makes parietal cortex a candidate for the origin of numerical spatial interaction. The underlying cognitive architecture of the interaction is still under scrutiny. Two classes of explanations can be distinguished. The early interaction approach assumes that numerical and spatial information are integrated into a single representation at a semantic level. A second approach postulates independent semantic representations. Only at the stage of response selection and preparation these two streams interact.In this study we used a numerical landmark task to identify the locus of the interaction between numbers and space. While lying in an MR scanner participants decided on the smaller of two numerical intervals in a visually presented number triplet. The spatial position of the middle number was varied; hence spatial intervals were congruent or incongruent with the numerical intervals. Responses in incongruent trials were slower and less accurate than in congruent trials. By combining across vertex correlations (micro pattern) with a cluster analysis (macro pattern) we identified three networks that were devoted to number processing, eye movements, and sensory motor functions. Using support vector machine classifiers in different regions of interest along the IPS, the frontal eye fields and supplementary motor area to distinguish between congruent and incongruent trials we were able to distinguish between congruent and incongruent trials in each of the three networks. We suggest that the three identified networks participate in the integration of numerical and spatial information and that the exclusive assumption of either an early or a late interaction between numerical and spatial information does not do justice to the complex interaction between both dimensions
Spatial-numerical and ordinal positional associations coexist in parallel
There is evidence for a systematic association of numbers and space. A prominent finding supporting this notion is the spatial-numerical association of response codes (SNARC) effect describing relatively faster responses to smaller numbers using a left-hand key and to larger numbers using a right-hand key. However, the assumption of the SNARC effect reflecting spatial-numerical associations was challenged recently. A working memory account was proposed suggesting that not numbers per se but their position in a memorized sequence is associated with space. Yet, there is also first evidence suggesting that this ordinal position and the SNARC effect may not be mutually exclusive. In the present study, we further examined the relationship between the ordinal position and the SNARC effect. We manipulated the number of items in the memorized ordered sequence and the number range employed. Results revealed both a significant positional order effect, but also a significant SNARC effect, substantiating the view that both effects are not mutually exclusive but may co-exist. Furthermore, we found that the SNARC effect was reduced when numbers ranging from 1 to 10 versus numbers ranging from 1 to 9 were employed. Thus, our results question a pure working memory account for the SNARC effect working memory account for the SNARC effect. Additionally, they highlight the critical role of the number range employed in research about the SNARC effect
Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and usefulness: insights from the Polish adaptation
Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS), known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations.We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857) was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety.The current study shows transcultural validity of math anxiety assessment with the AMAS
Spatial displacement of numbers on a vertical number line in spatial neglect
Previous studies that investigated the association of numbers and space in humans came to contradictory conclusions about the spatial character of the mental number magnitude representation and about how it may be influenced by unilateral spatial neglect. The present study aimed to disentangle the debated influence of perceptual versus representational aspects via explicit mapping of numbers onto space by applying the number line estimation paradigm with vertical orientation of stimulus lines. Thirty-five acute right-brain damaged stroke patients (6 with neglect) were asked to place two-digit numbers on vertically oriented lines with 0 marked at the bottom and 100 at the top. In contrast to the expected, nearly linear mapping in the control patient group, patients with spatial neglect overestimated the position of numbers in the lower middle range. The results corroborate spatial characteristics of the number magnitude representation. In neglect patients, this representation seems to be biased towards the ipsilesional side, independent of the physical orientation of the task stimuli