19 research outputs found
Biological activity of a genetically modified BMP-2 variant with inhibitory activity
<p>Abstract</p> <p>Background</p> <p>Alterations of the binding epitopes of bone morphogenetic protein-2 (BMP-2) lead to a modified interaction with the ectodomains of BMP receptors. In the present study the biological effect of a BMP-2 double mutant with antagonistic activity was evaluated in vivo.</p> <p>Methods</p> <p>Equine-derived collagenous carriers were loaded with recombinant human BMP-2 (rhBMP-2) in a well-known dose to provide an osteoinductive stimulus. The study was performed in a split animal design: carriers only coupled with rhBMP-2 (control) were implanted into prepared cavities of lower limb muscle of rats, specimens coupled with rhBMP-2 as well as BMP-2 double mutant were placed into the opposite limb in the same way. After 28 days the carriers were explanted, measured radiographically and characterized histologically.</p> <p>Results</p> <p>As expected, the BMP-2 loaded implants showed a typical heterotopic bone formation. The specimens coupled with both proteins showed a significant decreased bone formation in a dose dependent manner.</p> <p>Conclusion</p> <p>The antagonistic effect of a specific BMP-2 double mutant could be demonstrated in vivo. The dose dependent influence on heterotopic bone formation by preventing rhBMP-2 induced osteoinduction suggests a competitive receptor antagonism.</p
Three-dimensional printing of porous load-bearing bioceramic scaffolds
This article reports on the use of the binder jetting three-dimensional printing process combined with sintering to process bioceramic materials to form micro- and macroporous three-dimensional structures. Three different glass-ceramic formulations, apatite–wollastonite and two silicate-based glasses, have been processed using this route to create porous structures which have Young’s modulus equivalent to cortical bone and average bending strengths in the range 24–36 MPa. It is demonstrated that a range of macroporous geometries can be created with accuracies of ±0.25 mm over length scales up to 40 mm. Hot-stage microscopy is a valuable tool in the definition of processing parameters for the sintering step of the process. Overall, it is concluded that binder jetting followed by sintering offers a versatile process for the manufacture of load-bearing bioceramic components for bone replacement applications
BMP-2 Dependent Increase of Soft Tissue Density in Arthrofibrotic TKA
Arthrofibrosis after total knee arthroplasty (TKA) is difficult to treat, as its aetiology remains unclear. In a previous study, we established a connection between the BMP-2 concentration in the synovial fluid and arthrofibrosis after TKA. The hypothesis of the present study was, therefore, that the limited range of motion in arthrofibrosis is caused by BMP-2 induced heterotopic ossifications, the quantity of which is dependent on the BMP-2 concentration in the synovial fluid
Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds
Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous
scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone
and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering
GDF-5 can act as a context-dependent BMP-2 antagonist
Background
Bone morphogenetic protein (BMP)-2 and growth and differentiation factor (GDF)-5 are two related transforming growth factor (TGF)-β family members with important functions in embryonic development and tissue homeostasis. BMP-2 is best known for its osteoinductive properties whereas GDF-5—as evident from its alternative name, cartilage derived morphogenetic protein 1—plays an important role in the formation of cartilage. In spite of these differences both factors signal by binding to the same subset of BMP receptors, raising the question how these different functionalities are generated. The largest difference in receptor binding is observed in the interaction with the type I receptor BMPR-IA. GDF-5, in contrast to BMP-2, shows preferential binding to the isoform BMPR-IB, which is abrogated by a single amino acid (A57R) substitution. The resulting variant, GDF-5 R57A, represents a “BMP-2 mimic” with respect to BMP receptor binding. In this study we thus wanted to analyze whether the two growth factors can induce distinct signals via an identically composed receptor.
Results
Unexpectedly and dependent on the cellular context, GDF-5 R57A showed clear differences in its activity compared to BMP-2. In ATDC-5 cells, both ligands induced alkaline phosphatase (ALP) expression with similar potency. But in C2C12 cells, the BMP-2 mimic GDF-5 R57A (and also wild-type GDF-5) clearly antagonized BMP-2-mediated ALP expression, despite signaling in both cell lines occurring solely via BMPR-IA. The BMP-2- antagonizing properties of GDF-5 and GDF-5 R57A could also be observed in vivo when implanting BMP-2 and either one of the two GDF-5 ligands simultaneously at heterotopic sites.
Conclusions
Although comparison of the crystal structures of the GDF-5 R57A:BMPR-IAEC- and BMP-2:BMPR-IAEC complex revealed small ligand-specific differences, these cannot account for the different signaling characteristics because the complexes seem identical in both differently reacting cell lines. We thus predict an additional component, most likely a not yet identified GDF-5-specific co-receptor, which alters the output of the signaling complexes. Hence the presence or absence of this component then switches GDF-5′s signaling capabilities to act either similar to BMP-2 or as a BMP-2 antagonist. These findings might shed new light on the role of GDF-5, e.g., in cartilage maintenance and/or limb development in that it might act as an inhibitor of signaling events initiated by other BMPs