206 research outputs found

    Enhancement of critical current density and vortex activation energy in proton-irradiated Co-doped BaFe2As2

    Full text link
    The effect of proton irradiation in Ba(Fe0.93Co0.07)2As2 single crystals is reported. We analyze temperature dependence of current density and normalized flux relaxation rate in the framework of collective creep model. Glassy exponent and barrier height for flux creep are directly determined by Maley's method. Our model functions for barrier height and critical current density in the absence of flux creep are explained by the superposition of \deltaTc- and \deltal-pinning. We also approach true critical current density by means of generalized inversion scheme, and the obtained result is in reasonable agreement with our model function. Proton irradiation effect on temperature dependence of current density and normalized relaxation rate can be summarized as doubling of barrier height at the beginning of flux creep.Comment: 6 pages, 4 figures. To be published in Phys. Rev.

    Computational Investigation and Experimental Verification of Multiplicity Counting from the Continuous Signals of Fission Chambers

    Get PDF
    In a series of previous publications, we suggested an alternative method to the pulse-counting based multiplicity counting technique for the characterisation of special nuclear materialscollision number expansion. The new method uses the continuous signals of fission chambers, and the multiplicity rates, i.e. the singles, doubles and triples rates are extracted from the auto- and cross-covariances of one or more fission chambers. Until recently only the theory of the method was elaborated. The purpose of the work described in this report was to verify the method and investigate its performance and applicability through detailed simulations as well as with a dedicated experiment. Numerical simulations of the method were performed by a code specially developed for this study, and pilot measurements were performed at the critical assembly KUCA of the Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS). This report gives an account of both the work performed and the results of the study

    The Influence of Chronic Cerebral Hypoperfusion on Cognitive Function and Amyloid β Metabolism in APP Overexpressing Mice

    Get PDF
    Cognitive impairment resulting from cerebrovascular insufficiency has been termed vascular cognitive impairment, and is generally accepted to be distinct from Alzheimer's disease resulting from a neurodegenerative process. However, it is clear that this simple dichotomy may need revision in light of the apparent occurrence of several shared features between Alzheimer's disease and vascular cognitive impairment. Nevertheless, it still remains largely unknown whether the burden of vascular- and Alzheimer-type neuropathology are independent or interdependent. Therefore, we investigated whether chronic cerebral hypoperfusion influences cognitive ability or amyloid β deposition in amyloid precursor protein (APP) overexpressing transgenic mice

    Preparatory acoustic emission activity of hydraulic fracture in granite with various viscous fluids revealed by deep learning technique

    Get PDF
    To investigate the influence of fluid viscosity on the fracturing process, we conducted hydraulic fracturing experiments on Kurokami-jima granite specimens with resins of various viscosities. We monitored the acoustic emission (AE) activity during fracturing and estimated the moment tensor (MT) solutions for 54 727 AE events using a deep learning technique. We observed the breakdown at 14–22 MPa of borehole pressure, which was dependent on the viscosity, as well as two preparatory phases accompanying the expansion of AE-active regions. The first expansion phase typically began at 10–30 per cent of the breakdown pressure, where AEs occurred three-dimensionally surrounding the wellbore and their active region expanded with time towards the external boundaries of the specimen. The MT solutions of these AEs corresponded to crack-opening (tensile) events in various orientations. The second expansion phase began at 90–99 per cent of the breakdown pressure. During this phase, a new planar AE distribution emerged from the borehole and expanded along the maximum compression axis, and the focal mechanisms of these AEs corresponded to the tensile events on the AE-delineating plane. We interpreted that the first phase was induced by fluid penetration into pre-existing microcracks, such as grain boundaries, and the second phase corresponded to the main fracture formation. Significant dependences on fluid viscosity were observed in the borehole pressure at the time of main fracture initiation and in the speed of the fracture propagation in the second phase. The AE activity observed in the present study was fairly complex compared to that observed in previous experiments conducted on tight shale samples. This difference indicates the importance of the interaction between the fracturing fluid and pre-existing microcracks in the fracturing process

    Predicting the outcome of chronic kidney disease by the estimated nephron number: The rationale and design of PRONEP, a prospective, multicenter, observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nephron number is thought to be associated with the outcome of chronic kidney disease (CKD). If the nephron number can be estimated in the clinical setting, it could become a strong tool to predict renal outcome. This study was designed to estimate the nephron number in CKD patients and to establish a method to predict the outcome by using the estimated nephron number.</p> <p>Methods/Design</p> <p>The hypothesis of this study is that the estimated nephron number can predict the outcome of a CKD patient. This will be a multicenter, prospective (minimum 3 and maximum 5 years follow-up) study. The subjects will comprise CKD patients aged over 14 years who have undergone a kidney biopsy. From January 2011 to March 2013, we will recruit 600 CKD patients from 10 hospitals belonging to the National Hospital Organization of Japan. The primary parameter for assessment is the composite of total mortality, renal death, cerebro-cardiovascular events, and a 50% reduction in the eGFR. The secondary parameter is the rate of eGFR decline per year. The nephron number will be estimated by the glomerular density in biopsy specimens and the renal cortex volume. This study includes one sub-cohort study to establish the equation to calculate the renal cortex volume. Enrollment will be performed at the time of the kidney biopsy, and the data will consist of a medical interview, ultrasound for measurement of the kidney size, blood or urine test, and the pathological findings of the kidney biopsy. Patients will continue to have medical consultations and receive examinations and/or treatment as usual. The data from the patients will be collected once a year after the kidney biopsy until March 2016. All data using this study are easily obtained in routine clinical practice.</p> <p>Discussion</p> <p>This study includes the first trials to estimate the renal cortex volume and nephron number in the general clinical setting. Furthermore, this is the first prospective study to examine whether the nephron number predicts the outcome of CKD patients. The results from this study should provide powerful new tools for nephrologists in routine clinical practice.</p> <p>Trial registration</p> <p>UMIN-Clinical Trial Registration, UMIN000004784.</p
    corecore