16 research outputs found
Mechanised metamathematics : an investigation of first-order logic and set theory in constructive type theory
In this thesis, we investigate several key results in the canon of metamathematics, applying the contemporary perspective of formalisation in constructive type theory and mechanisation in the Coq proof assistant. Concretely, we consider the central completeness, undecidability, and incompleteness theorems of first-order logic as well as properties of the axiom of choice and the continuum hypothesis in axiomatic set theory. Due to their fundamental role in the foundations of mathematics and their technical intricacies, these results have a long tradition in the codification as standard literature and, in more recent investigations, increasingly serve as a benchmark for computer mechanisation. With the present thesis, we continue this tradition by uniformly analysing the aforementioned cornerstones of metamathematics in the formal framework of constructive type theory. This programme offers novel insights into the constructive content of completeness, a synthetic approach to undecidability and incompleteness that largely eliminates the notorious tedium obscuring the essence of their proofs, as well as natural representations of set theory in the form of a second-order axiomatisation and of a fully type-theoretic account. The mechanisation concerning first-order logic is organised as a comprehensive Coq library open to usage and contribution by external users.In dieser Doktorarbeit werden einige Schlüsselergebnisse aus dem Kanon der Metamathematik untersucht, unter Verwendung der zeitgenössischen Perspektive von Formalisierung in konstruktiver Typtheorie und Mechanisierung mit Hilfe des Beweisassistenten Coq. Konkret werden die zentralen Vollständigkeits-, Unentscheidbarkeits- und Unvollständigkeitsergebnisse der Logik erster Ordnung sowie Eigenschaften des Auswahlaxioms und der Kontinuumshypothese in axiomatischer Mengenlehre betrachtet. Aufgrund ihrer fundamentalen Rolle in der Fundierung der Mathematik und ihrer technischen Schwierigkeiten, besitzen diese Ergebnisse eine lange Tradition der Kodifizierung als Standardliteratur und, besonders in jüngeren Untersuchungen, eine zunehmende Bedeutung als Maßstab für Mechanisierung mit Computern. Mit der vorliegenden Doktorarbeit wird diese Tradition fortgeführt, indem die zuvorgenannten Grundpfeiler der Methamatematik uniform im formalen Rahmen der konstruktiven Typtheorie analysiert werden. Dieses Programm ermöglicht neue Einsichten in den konstruktiven Gehalt von Vollständigkeit, einen synthetischen Ansatz für Unentscheidbarkeit und Unvollständigkeit, der großteils den berüchtigten, die Essenz der Beweise verdeckenden, technischen Aufwand eliminiert, sowie natürliche Repräsentationen von Mengentheorie in Form einer Axiomatisierung zweiter Ordnung und einer vollkommen typtheoretischen Darstellung. Die Mechanisierung zur Logik erster Ordnung ist als eine umfassende Coq-Bibliothek organisiert, die offen für Nutzung und Beiträge externer Anwender ist
Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq
We mechanise the undecidability of various frst-order axiom systems in Coq, employing
the synthetic approach to computability underlying the growing Coq Library of Undecidability Proofs. Concretely, we cover both semantic and deductive entailment in fragments
of Peano arithmetic (PA) as well as ZF and related fnitary set theories, with their undecidability established by many-one reductions from solvability of Diophantine equations, i.e.
Hilbert’s tenth problem (H10), and the Post correspondence problem (PCP), respectively.
In the synthetic setting based on the computability of all functions defnable in a constructive foundation, such as Coq’s type theory, it sufces to defne these reductions as metalevel functions with no need for further encoding in a formalised model of computation.
The concrete cases of PA and the considered set theories are supplemented by a general
synthetic theory of undecidable axiomatisations, focusing on well-known connections to
consistency and incompleteness. Specifcally, our reductions rely on the existence of standard models, necessitating additional assumptions in the case of full ZF, and all axiomatic
extensions still justifed by such standard models are shown incomplete. As a by-product of
the undecidability of set theories formulated using only membership and no equality symbol, we obtain the undecidability of frst-order logic with a single binary relation
An Analysis of Tennenbaum's Theorem in Constructive Type Theory
Tennenbaum's theorem states that the only countable model of Peano arithmetic
(PA) with computable arithmetical operations is the standard model of natural
numbers. In this paper, we use constructive type theory as a framework to
revisit, analyze and generalize this result. The chosen framework allows for a
synthetic approach to computability theory, exploiting that, externally, all
functions definable in constructive type theory can be shown computable. We
then build on this viewpoint and furthermore internalize it by assuming a
version of Church's thesis, which expresses that any function on natural
numbers is representable by a formula in PA. This assumption provides for a
conveniently abstract setup to carry out rigorous computability arguments, even
in the theorem's mechanization. Concretely, we constructivize several classical
proofs and present one inherently constructive rendering of Tennenbaum's
theorem, all following arguments from the literature. Concerning the classical
proofs in particular, the constructive setting allows us to highlight
differences in their assumptions and conclusions which are not visible
classically. All versions are accompanied by a unified mechanization in the Coq
proof assistant.Comment: 23 pages, extension of conference paper published at FSCD 202
Trakhtenbrot's Theorem in Coq: Finite Model Theory through the Constructive Lens
26 pages, extended version of the IJCAR 2020 paper. arXiv admin note: substantial text overlap with arXiv:2004.07390International audienceWe study finite first-order satisfiability (FSAT) in the constructive setting of dependent type theory. Employing synthetic accounts of enumerability and decidability, we give a full classification of FSAT depending on the first-order signature of non-logical symbols. On the one hand, our development focuses on Trakhtenbrot's theorem, stating that FSAT is undecidable as soon as the signature contains an at least binary relation symbol. Our proof proceeds by a many-one reduction chain starting from the Post correspondence problem. On the other hand, we establish the decidability of FSAT for monadic first-order logic, i.e. where the signature only contains at most unary function and relation symbols, as well as the enumerability of FSAT for arbitrary enumerable signatures. To showcase an application of Trakthenbrot's theorem, we continue our reduction chain with a many-one reduction from FSAT to separation logic. All our results are mechanised in the framework of a growing Coq library of synthetic undecidability proofs
Trakhtenbrot's Theorem in Coq: Finite Model Theory through the Constructive Lens
We study finite first-order satisfiability (FSAT) in the constructive setting
of dependent type theory. Employing synthetic accounts of enumerability and
decidability, we give a full classification of FSAT depending on the
first-order signature of non-logical symbols. On the one hand, our development
focuses on Trakhtenbrot's theorem, stating that FSAT is undecidable as soon as
the signature contains an at least binary relation symbol. Our proof proceeds
by a many-one reduction chain starting from the Post correspondence problem. On
the other hand, we establish the decidability of FSAT for monadic first-order
logic, i.e. where the signature only contains at most unary function and
relation symbols, as well as the enumerability of FSAT for arbitrary enumerable
signatures. To showcase an application of Trakhtenbrot's theorem, we continue
our reduction chain with a many-one reduction from FSAT to separation logic.
All our results are mechanised in the framework of a growing Coq library of
synthetic undecidability proofs
A Coq Library of Undecidable Problems
International audienceWe propose a talk on our library of mechanised reductions to establish undecidability results in Coq. The library is a collaborative effort, growing constantly and we are seeking more outside contributors willing to work on undecidability results in Coq
Undecidability of Dyadic First-Order Logic in Coq
We develop and mechanize compact proofs of the undecidability of various problems for dyadic first-order logic over a small logical fragment. In this fragment, formulas are restricted to only a single binary relation, and a minimal set of logical connectives. We show that validity, satisfiability, and provability, along with finite satisfiability and finite validity are undecidable, by directly reducing from a suitable binary variant of Diophantine constraints satisfiability. Our results improve upon existing work in two ways: First, the reductions are direct and significantly more compact than existing ones. Secondly, the undecidability of the small logic fragment of dyadic first-order logic was not mechanized before. We contribute our mechanization to the Coq Library of Undecidability Proofs, utilizing its synthetic approach to computability theory