11 research outputs found

    Downregulation of methylthioadenosine phosphorylase promotes progression of hepatocellular carcinoma via accumulation of 5´-deoxy-5´-methylthioadenosine

    Get PDF
    Recently, it has been shown that downregulation of methylthioadenosine phosphorylase (MTAP) in hepatocellular carcinoma (HCC) cells enhanced cell proliferation and resistance against cytokines. The aim of this work was to investigate the molecular mechanism underlying this tumor-promoting effect and to expand previous analysis to a large series of human HCC tissues. Liquid chromatography tandem mass spectrometry revealed that reduced MTAP expression resulted in higher intra- and extracellular concentrations of 5'-deoxy-5'- (methylthio)adenosine (MTA) in cultivated HCC cells and, concordantly, higher levels of MTA in HCC tissue. MTA induced matrix metalloproteinase (MMP) and interleukin-8 transcription in HCC cells in vitro accompanied by enhanced proliferation. In addition, MTA secreted by HCC cells induced expression of fibroblast growth factor-2 and MMP1 in stromal myofibroblasts. In human HCC tissues, MTAP mRNA correlated inversely with MTA levels, and immunohistochemical analysis of a tissue microarray of 140 human HCCs revealed that low MTAP protein expression correlated with advanced tumor stages. In conclusion, MTAP deficiency induced tumorigenicity via accumulation of MTA, which affected both HCC cells and the tumor microenvironment. These data further indicate MTAP as a tumor suppressor in HCC, and MTA as a potential biomarker for HCC progression

    Increased expression of zinc finger protein 267 in non-alcoholic fatty liver disease.

    Get PDF
    Hepatocellular lipid accumulation is a hallmark of non-alcoholicfatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign

    Clinical spectrum in three families with familial hemiplegic migraine type 2 including a novel mutation in the ATP1A2 gene

    Get PDF
    Introduction Familial hemiplegic migraine (FHM) is a rare subtype of migraine with transient hemiplegic aura. Patients and methods We describe three unrelated families with familial hemiplegic migraine type II (FHM2). Retrospectively, information on 47 family members could be obtained, 15 by personal examination and 32 by indirect anamnesis from relatives. Genetic analyses were performed in 13 patients. Results One family had a novel missense mutation in the ATP1A2 gene (c.659C>T, p.Ser220Leu) that segregated with the phenotype in three generations. Two further unrelated families with different ethnic backgrounds (one from Germany and one from Russia) had a missense mutation that has not been described as yet in FHM, but occurred in only a single patient with sporadic hemiplegic migraine (c.2723G>A, p.Arg908Gln). Clinically the patients had severe attacks lasting up to several weeks as well as epileptic seizures. Three patients with a proven mutation in the ATP1A2 gene clinically presented without hemiparesis. Furthermore, there was a possible relation of FHM2 to mental retardation in another two patients. Conclusion Clinical symptoms may last for several weeks in some patients. Patients with FHM2 may also present without hemiplegia. Therefore, the full family history has to be taken into account to establish the diagnosis of FHM

    Quantification of intermediates of the methionine and polyamine metabolism by liquid chromatography-tandem mass spectrometry in cultured tumor cells and liver biopsies

    No full text
    By means of liquid chromatography-tandem mass spectrometry we showed recently, that the chromosomal deletion or inactivation of the methylthioadenosine phosphorylase (MTAP) gene led to the accumulation of 5'-deoxy-5'-(methylthio)adenosine (MTA) in cancer cells. Here, we expanded the method to other key intermediates of the methionine and polyamine pathways to further elucidate the molecular consequences of a lack of MTAP activity. Employing multiple-reaction monitoring, limits of detection and lower limits of quantification in the range of 2.5-100 and 5.0-500 nM, respectively, were achieved according to the guidelines of the FDA, thus enabling the direct measurement of the metabolites in biological samples without prior enrichment and derivatization with an analytical repeatability of 1-3%. Relative standards deviations for quadruplicate 80% methanol extractions of metabolites from cultured tumor cells ranged from 1.1 to 25.5%, while the combined methodological and biological variability in metabolite concentrations in 10 liver biopsies was 11.8-51.4%. The method enabled the demonstration of changes in the concentration of intermediates of the methionine and polyamine metabolism other than MTA in hepatocellular carcinoma specimens lacking the enzyme MTAP compared to normal liver tissue

    Elevated systemic monocyte chemoattractrant protein-1 in hepatic steatosis without significant hepatic inflammation

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is strongly associated with obesity and the metabolic syndrome. It encompasses a clinico-pathologic spectrum of conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). The latter develops upon pro-inflammatory cell infiltration and is widely considered as the first relevant pathophysiological step in NAFLD-progression. The chemokine monocyte chemoattractant protein 1 (MCP-1) plays an important role in the progression of hepatic inflammation and fibrosis, and both increased hepatic expression and circulating serum levels have been described in NASH. Here, we aimed to investigate MCP-1 expression in simple hepatic steatosis. Upon feeding a high-fat diet mice developed hepatic steatosis in the absence of significant hepatic inflammation, but elevated hepatic MCP-1 expression compared to control mice fed a standard chow. Interestingly, high-fat diet fed mice had significantly higher MCP-1 serum levels, and MCP-1 mRNA expression was significantly increased in visceral adipose tissue. Furthermore, MCP-1 serum levels were also elevated in patients with ultrasound-diagnosed NAFLD and correlated with the body-mass index and fasting glucose. In conclusion, our data indicate both the liver and adipose tissue as cellular sources of elevated circulating MCP-1 levels already in the early phase of hepatic steatosis. Since MCP-1 derived from visceral adipose tissue reaches the liver via portal circulation at high concentrations it may significantly contribute to the progression of simple steatosis to NASH

    Expression of fatty acid synthase in nonalcoholic fatty liver disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD

    Hepatic steatosis causes induction of the chemokine RANTES in the absence of significant hepatic inflammation

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum ranging from simple steatosis to cirrhosis. Hepatocellular lipid accumulation is a hallmark of both nonalcoholic steatosis and steatohepatitis (NASH). The latter develops upon pro-inflammatory cell infiltration and is widely considered as the first relevant pathophysiological step in NAFLD-progression. The chemokine CCL5/RANTES plays an important role in the progression of hepatic inflammation and fibrosis. We here aimed to investigate its expression in NAFLD. Incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation, and corresponding dose-dependent RANTES induction in vitro. Furthermore, we observed significantly elevated hepatic RANTES expression in a dietary model of NAFLD, in which mice were fed a high-fat diet for 12 weeks. This diet induced significant hepatic steatosis but only minimal inflammation. In contrast to the liver, RANTES expression was not induced in visceral adipose tissue of the group fed with high-fat diet. Finally, RANTES serum levels were elevated in patients with ultrasound-diagnosed NAFLD. In conclusion, our data indicate hepatocytes as cellular source of elevated hepatic as well as circulating RANTES levels in response to hepatic steatosis. Noteworthy, upregulation of RANTES in response to lipid accumulation occurs in the absence of relevant inflammation, which further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign
    corecore