41 research outputs found
Nanomechanical mass measurement using nonlinear response of a graphene membrane
We propose a scheme to measure the mass of a single particle using the nonlinear response of a 2D nanoresonator with degenerate eigenmodes. Using numerical and analytical calculations, we show that by driving a square graphene nanoresonator into the nonlinear regime, simultaneous determination of the mass and position of an added particle is possible. Moreover, this scheme only requires measurements in a narrow frequency band near the fundamental resonance
Edge plasmons in graphene nanostructures
Plasmon modes in graphene are influenced by the unusual dispersion relation of the material. For bulk plasmons this results in a n(1/4) dependence of the plasma frequency on the charge density, as opposed to the n(1/2) dependence in two-dimensional electron gas (2DEG); yet, bulk plasmon dispersion in graphene follows a similar q(1/2) behavior as for other two-dimensional materials. In this work we consider finite graphene nanostructures, semi-infinite sheets, and circular disks and study edge plasmons that are confined to the boundaries of the structures. We find that, for abrupt edges, graphene edge plasmons behave analogously to those in 2DEGs, but, for gradual edge profiles, important distinctions arise. In particular, we show that for a linear edge profile, graphene supports fewer edge modes than a 2DEG at a given q, and the edge monopole plasmon dispersion in graphene follows a q(1/4) law in contrast to the q(0) behavior seen in 2DEGs. RAMOWITZ M, 196
Edge magnetoplasmons and the optical excitations in graphene disks
We discuss the edge magnetoplasmon properties in highly doped graphene disks, and the corresponding optical excitations. Edge magnetoplasmons with nonzero angular momentum (l not equal 0) have two branches corresponding to different edge current rotations with respect to the magnetic field. The resonance energies of one branch are blueshifted and the other redshifted relative to energies at B = 0, with the energy differences linearly proportional to the magnetic field. Recently, the l = 1 dipole mode has been investigated by two experiments using optical transmission spectroscopy [Crassee et al., Nano Lett. 12, 2470 (2012); Yan et al., ibid. 12, 3766 (2012)], and classical cyclotron resonances were found in highly doped graphene samples. These are determined by graphene magneto-optical conductivities, which behave like a conventional two-dimensional electron system in the high doping limit
Temperature-dependent resistance of a finite one-dimensional Josephson junction array
We study theoretically the temperature and array-length dependences of the resistance of a finite one-dimensional array of Josephson junctions. We use both analytic approximations and numerical simulations, and conclude that within the self-charging model, all finite arrays are resistive in the low-temperature limit. A heuristic analysis shows qualitative agreement with resistance obtained from Monte Carlo simulations, establishing a connection between resistance and the occurrence of vortices in the corresponding 1 +1D XY-model. We compare our results with recent experiments and conclude that while the self-charging model reproduces some of the experimental observations, it underestimates the superconducting tendencies in the experimental structures
Nonlinear damping in graphene resonators
Based on a continuum mechanical model for single-layer graphene, we propose and analyze a microscopic mechanism for dissipation in nanoelectromechanical graphene resonators. We find that coupling between flexural modes and in-plane phonons leads to linear and nonlinear damping of out-of-plane vibrations. By tuning external parameters such as bias and ac voltages, one can cross over from a linear-to a nonlinear-damping dominated regime. We discuss the behavior of the effective quality factor in this context. DOI: 10.1103/PhysRevB.86.23543
The Quantum Hall Effect in Narrow MOSFETs
Contains description of one research project.Joint Services Electronics Program DAAL03-89-C-000
Interplay of Coulomb blockade and Aharonov-Bohm resonances in a Luttinger liquid
We consider a ring of strongly interacting electrons connected to two
external leads by tunnel junctions. By studying the positions of conductance
resonances as a function of gate voltage and magnetic flux the interaction
parameter can be determined experimentally. For a finite ring the minimum
conductance is strongly influenced by device geometry and electron-electron
interactions. In particular, if the tunnel junctions are close to one another
the interaction-related orthogonality catastrophe is suppressed and the valley
current is unexpectedly large.Comment: 10 page
Shot Noise and Full Counting Statistics from Non-equilibrium Plasmons in Luttinger-Liquid Junctions
We consider a quantum wire double junction system with each wire segment
described by a spinless Luttinger model, and study theoretically shot noise in
this system in the sequential tunneling regime. We find that the
non-equilibrium plasmonic excitations in the central wire segment give rise to
qualitatively different behavior compared to the case with equilibrium
plasmons. In particular, shot noise is greatly enhanced by them, and exceeds
the Poisson limit. We show that the enhancement can be explained by the
emergence of several current-carrying processes, and that the effect disappears
if the channels effectively collapse to one due to, {\em e.g.}, fast plasmon
relaxation processes.Comment: 9 pages; IOP Journal style; several changes in the tex
Transport Through a Quantum Dot
Contains description of one research project.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-000
Coulomb Blockade in Narrow MOSFETs
Contains description of one research project.Joint Services Electronics Program Contract DAAL03-89-C-000