101 research outputs found
On the Enumeration of all Minimal Triangulations
We present an algorithm that enumerates all the minimal triangulations of a
graph in incremental polynomial time. Consequently, we get an algorithm for
enumerating all the proper tree decompositions, in incremental polynomial time,
where "proper" means that the tree decomposition cannot be improved by removing
or splitting a bag
The Complexity of the Shapley Value for Regular Path Queries
A path query extracts vertex tuples from a labeled graph, based on the words that are formed by the paths connecting the vertices. We study the computational complexity of measuring the contribution of edges and vertices to an answer to a path query, focusing on the class of conjunctive regular path queries. To measure this contribution, we adopt the traditional Shapley value from cooperative game theory. This value has been recently proposed and studied in the context of relational database queries and has uses in a plethora of other domains.
We first study the contribution of edges and show that the exact Shapley value is almost always hard to compute. Specifically, it is #P-hard to calculate the contribution of an edge whenever at least one (non-redundant) conjunct allows for a word of length three or more. In the case of regular path queries (i.e., no conjunction), the problem is tractable if the query has only words of length at most two; hence, this property fully characterizes the tractability of the problem. On the other hand, if we allow for an approximation error, then it is straightforward to obtain an efficient scheme (FPRAS) for an additive approximation. Yet, a multiplicative approximation is harder to obtain. We establish that in the case of conjunctive regular path queries, a multiplicative approximation of the Shapley value of an edge can be computed in polynomial time if and only if all query atoms are finite languages (assuming non-redundancy and conventional complexity limitations). We also study the analogous situation where we wish to determine the contribution of a vertex, rather than an edge, and establish complexity results of similar nature
Joining Extractions of Regular Expressions
Regular expressions with capture variables, also known as "regex formulas,"
extract relations of spans (interval positions) from text. These relations can
be further manipulated via Relational Algebra as studied in the context of
document spanners, Fagin et al.'s formal framework for information extraction.
We investigate the complexity of querying text by Conjunctive Queries (CQs) and
Unions of CQs (UCQs) on top of regex formulas. We show that the lower bounds
(NP-completeness and W[1]-hardness) from the relational world also hold in our
setting; in particular, hardness hits already single-character text! Yet, the
upper bounds from the relational world do not carry over. Unlike the relational
world, acyclic CQs, and even gamma-acyclic CQs, are hard to compute. The source
of hardness is that it may be intractable to instantiate the relation defined
by a regex formula, simply because it has an exponential number of tuples. Yet,
we are able to establish general upper bounds. In particular, UCQs can be
evaluated with polynomial delay, provided that every CQ has a bounded number of
atoms (while unions and projection can be arbitrary). Furthermore, UCQ
evaluation is solvable with FPT (Fixed-Parameter Tractable) delay when the
parameter is the size of the UCQ
- …