13,115 research outputs found
Simulation of the deflected cutting tool trajectory in complex surface milling
Since industry is rapidly developing, either locally
or globally, manufacturers witness harder challenges due to
the growing competitivity. This urges them to better consider the four factors linked to production and output: quality, quantity, cost and price, quality being of course the most important factor which constitutes their main concern. Efforts will be concentrated—in this research—on improving the quality and securing more accuracy for a machined surface in ball-end milling. Quality and precision are two essential criteria in industrial milling. However, milling errors and imperfections, duemainly to the cutting tool deflection, hinder the full achieving of these targets. Our task, all along this paper, consists in studying and realizing the simulation of the deflected cutting tool trajectory, by using the methods which are available. In a future stage, and in the frame of a deeper
research, the simulation process will help to carry out the
correction and the compensation of the errors resulting from
the tool deflection. The corrected trajectory which is obtained by the method mirror will be sent to the machine. To achieve this goal, the next process consists—as a first step—in selecting a model of cutting forces for a ball-end mill. This allows to define—later on—the behavior of this tool, and the emergence of three methods namely the analytical model, the finite elements method, and the experimental method. It is possible to tackle the cutting forces simulation, all along the tool trajectory, while this latter is carrying out the sweeping of the part to be machined in milling and taking into consideration the cutting conditions, as well as the geography of the workpiece. A simulation of the deflected cutting tool trajectory dependent on the cutting forces has been realized
SUSY dark matter(s)
We review here the status of different dark matter candidates in the context
of supersymmetric models, in particular the neutralino as a realization of the
WIMP-mechanism and the gravitino. We give a summary of the recent bounds in
direct and indirect detection and also of the LHC searches relevant for the
dark matter question. We discuss also the implications of the Higgs discovery
for the supersymmetric dark matter models and give the prospects for the future
years.Comment: 16 pages, 3 figure
Network integration meets network dynamics
Molecular interaction networks provide a window on the workings of the cell. However, combining various types of networks into one coherent large-scale dynamic model remains a formidable challenge. A recent paper in BMC Systems Biology describes a promising step in this direction
Recommended from our members
The relationship between sleep and behavior in autism spectrum disorder (ASD): a review
Although there is evidence that significant sleep problems are common in children with autism spectrum disorder (ASD) and that poor sleep exacerbates problematic daytime behavior, such relationships have received very little attention in both research and clinical practice. Treatment guidelines to help manage challenging behaviors in ASD fail to mention sleep at all, or they present a very limited account. Moreover, limited attention is given to children with low-functioning autism, those individuals who often experience the most severe sleep disruption and behavioral problems. This paper describes the nature of sleep difficulties in ASD and highlights the complexities of sleep disruption in individuals with low-functioning autism. It is proposed that profiling ASD children based on the nature of their sleep disruption might help to understand symptom and behavioral profiles (or vice versa) and therefore lead to better-targeted interventions. This paper concludes with a discussion of the limitations of current knowledge and proposes areas that are important for future research. Treating disordered sleep in ASD has great potential to improve daytime behavior and family functioning in this vulnerable population
Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model
Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs. © 2011 Yang et al
Diagnostic accuracy of diagnostic imaging for lumbar disc herniation in adults with low back pain or sciatica is unknown; A systematic review
© 2018 The Author(s). Main text: We aim to summarize the available evidence on the diagnostic accuracy of imaging (index test) compared to surgery (reference test) for identifying lumbar disc herniation (LDH) in adult patients. For this systematic review we searched MEDLINE, EMBASE and CINAHL (June 2017) for studies that assessed the diagnostic accuracy of imaging for LDH in adult patients with low back pain and surgery as the reference standard. Two review authors independently selected studies, extracted data and assessed risk of bias. We calculated summary estimates of sensitivity and specificity using bivariate analysis, generated linked ROC plots in case of direct comparison of diagnostic imaging tests and assessed the quality of evidence using the GRADE-approach. We found 14 studies, all but one done before 1995, including 940 patients. Nine studies investigated Computed Tomography (CT), eight myelography and six Magnetic Resonance Imaging (MRI). The prior probability of LDH varied from 48.6 to 98.7%. The summary estimates for MRI and myelography were comparable with CT (sensitivity: 81.3% (95%CI 72.3-87.7%) and specificity: 77.1% (95%CI 61.9-87.5%)). The quality of evidence was moderate to very low. Conclusions: The diagnostic accuracy of CT, myelography and MRI of today is unknown, as we found no studies evaluating today's more advanced imaging techniques. Concerning the older techniques we found moderate diagnostic accuracy for all CT, myelography and MRI, indicating a large proportion of false positives and negatives
Thermodynamics of phase transition in higher dimensional AdS black holes
We investigate the thermodynamics of phase transition for
dimensional Reissner Nordstrom (RN)-AdS black holes using a grand canonical
ensemble. This phase transition is characterized by a discontinuity in specific
heat. The phase transition occurs from a lower mass black hole with negative
specific heat to a higher mass black hole with positive specific heat. By
exploring Ehrenfest's scheme we show that this is a second order phase
transition. Explicit expressions for the critical temperature and critical mass
are derived. In appropriate limits the results for dimensional
Schwarzschild AdS black holes are obtained.Comment: LaTex, 11 pages, 5 figures, To appear in JHE
- …