2,177 research outputs found
Organic Photodiodes and Their Optoelectronic Applications
Recently, organic photodiodes (OPDs) have been acknowledged as a next-generation device for photovoltaic and image sensor applications due to their advantages of large area process, light weight, mechanical flexibility, and excellent photoresponse. This dissertation targets for the development and understanding of high performance organic photodiodes for their medical and industrial applications for the next-generation.
As the first research focus, A dielectric / metal / dielectric (DMD) transparent electrode is proposed for the top-illumination OPDs. The fabricated DMD transparent electrode showed the maximum optical transmittance of 85.7 % with sheet resistance of 6.2 ohm/sq. In the second part of the thesis, a development of novel transfer process which enables the dark current suppression for the inverted OPD devices will be discussed. Through the effort, we demonstrated OPD with high D* of 4.82 x 10^12 Jones at reverse bias of 1.5 V with dark current density (Jdark) of 7.7 nA/cm2 and external quantum efficiency (EQE) of 60 %. Additionally in the third part, we investigate a high performance low-bandgap polymer OPD with broadband spectrum. By utilizing the novel transfer process to introduce charge blocking layers, significant suppression of the dark current is achieved while high EQE of the device is preserved. A low Jdark of 5 nA/cm2 at reverse bias of 0.5 V was achieved resulting in the highest D* of 1.5 x 10^13 Jones. To investigate the benefit for the various OPD applications, we developed a novel 3D printing technique to fabricate OPD on hemispherical concave substrate. The techniques allowed the direct patterning of the OPD devices on hemispherical substrates without excessive strain or deformation. Lastly, a simulation of the OPD stacked a-ITZO TFT active pixel sensor (APS) pixel with external transimpedance amplifier (TIA) readout circuit was performed.PHDElectrical & Computer Eng PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137168/1/hyunskim_1.pd
Low temperature London penetration depth and superfluid density in Fe-based superconductors
The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and superfluid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the superfluid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with artificially introduced disorder with heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the superfluid density are consistent with full-gap sign changing s± superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe2As2, both temperature dependence of the superfluid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe2As2 and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order
Bio-inspired Adaptable Facade Control Reflecting User\u27s Behavior
The purpose of this research is to develop the process of methodology in designing adaptable façade. This study focuses on the processes of façade operation control for each resident’s unit according to the user’s lifestyle. This study aims to develop the design methods that are applicable to the adaptable facade, which is inspired by the design inspiration of the biomimicry. The ideal façade to increase comfort in internal space is an adaptable façade that can constantly respond to changes in the environments. This chapter attempts in active adoption of adaptable facade that makes it possible to respond to changing requirements and environments, eventually enabling the creation of customized services for users. This chapter explores the processes of designing an adaptable façade controlled by three rules inspired by the behaviors of flocks of birds. This chapter shows how adopted bird intelligence can produce various façade controls. Also, this chapter demonstrates biomimetic façade control that has been implemented by behavior-based design. Through this demonstration, this chapter identifies the potentials of biomimetic design in facade using rules of bird flocking as source of design inspiration. This study concludes that a behavior-based approach provides flexibly responding façade to environments increasing users’ quality of life
Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae
BACKGROUND: Gene expression and transcription factor (TF) binding data have been used to reveal gene transcriptional regulatory networks. Existing knowledge of gene regulation can be presented using gene connectivity networks. However, these composite connectivity networks do not specify the range of biological conditions of the activity of each link in the network. RESULTS: We present a novel method that utilizes the expression and binding patterns of the neighboring nodes of each link in existing experimentally-based, literature-derived gene transcriptional regulatory networks and extend them in silico using TF-gene binding motifs and a compendium of large expression data from Saccharomyces cerevisiae. Using this method, we predict several hundreds of new transcriptional regulatory TF-gene links, along with experimental conditions in which known and predicted links become active. This approach unravels new links in the yeast gene transcriptional regulatory network by utilizing the known transcriptional regulatory interactions, and is particularly useful for breaking down the composite transcriptional regulatory network to condition specific networks. CONCLUSION: Our methods can facilitate future binding experiments, as they can considerably help focus on the TFs that must be surveyed to understand gene regulation. (Supplemental material and the latest version of the MATLAB implementation of the United Signature Algorithm is available online at [1] or [see Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
PEGASUS: Personalized Generative 3D Avatars with Composable Attributes
We present PEGASUS, a method for constructing a personalized generative 3D
face avatar from monocular video sources. Our generative 3D avatar enables
disentangled controls to selectively alter the facial attributes (e.g., hair or
nose) while preserving the identity. Our approach consists of two stages:
synthetic database generation and constructing a personalized generative
avatar. We generate a synthetic video collection of the target identity with
varying facial attributes, where the videos are synthesized by borrowing the
attributes from monocular videos of diverse identities. Then, we build a
person-specific generative 3D avatar that can modify its attributes
continuously while preserving its identity. Through extensive experiments, we
demonstrate that our method of generating a synthetic database and creating a
3D generative avatar is the most effective in preserving identity while
achieving high realism. Subsequently, we introduce a zero-shot approach to
achieve the same goal of generative modeling more efficiently by leveraging a
previously constructed personalized generative model.Comment: Accepted at CVPR 2024, Project Page:
https://snuvclab.github.io/pegasus
Accelerated Life Testing to Predict Service Life and Reliability for an Appliance Door Hinge
Appliance manufacturers have traditionally performed physical testing using prototypes to assess reliability and service integrity of new product designs. However, for white goods where service lives are measured in years or decades, the use of endurance testing to analyze long time reliability is uneconomical. As accelerated life testing (ALT) is more efficient and less costly than traditional reliability testing, the methodology is finding increased usage by appliance manufacturers. In the present study, a simulation-based ALT approach was used to predict the service life of a polyacetal hinge cam from a consumer refrigerator. A predictive life stress model based on cumulative surface wear under accelerated stress conditions was developed and used to predict time to failure under consumer use. Results show that the life stress model demonstrated good agreement with performance testing data and reasonably predicts hinge life
- …