68 research outputs found
The role of Robert Alexander Hardie in the Korean great revival and the subsequent development of Korean Protestant Christianity
https://place.asburyseminary.edu/ecommonsatsdissertations/1491/thumbnail.jp
Unidirectional emission from a cardioid-shaped microcavity laser
We find unidirectional emission in a cardioid-shaped microcavity laser. When a deformation parameter is well adjusted, rays starting around a period-5 unstable periodic orbit emit unidirectionally. To confirm the emission direction, we fabricate a laser by using an InGaAsP semiconductor and investigate emission characteristics. When the laser is excited by current injection with a dc current, resonances localized on the period-5 unstable periodic orbit emit unidirectionally. © 2016 Optical Society of America.1
Colorimetric Analysis on Flocculation of Bioinspired Au Self-Assembly for Biophotonic Application
Gold nanoparticles exhibited strong surface plasmon absorption and couplings between neighboring particles within bioactivated self-assembly modified their optical properties. Colorimetric analysis on the optical modification of surface plasmon resoanance (SPR) shift and flocculation parameter functionalized bioinspired gold assembly for biophotonic application. The physical origin of bioinspired gold aggregation-induced shifting, decreasing, or broadening of the plasmon absorption spectra could be explained in terms of dynamic depolarization, collisional damping, and shadowing effects
Optical biochemical sensor based on half-circled microdisk laser diode
In this study, a half-circled cavity based microdisk laser diode is proposed and demonstrated experimentally for an integrated photonic biochemical sensor. Conventional microdisk sensors have limitations in optical coupling and reproducibility. In order to overcome these drawbacks, we design a novel half-circled micro disk laser (HC-MDL) which is easy to manufacture and has optical output directionality. The Q-factor of the fabricated HC-MDL was measured as 7.72 × 106 using the self-heterodyne method and the side mode suppression ratio was measured as 23 dB. Moreover, gas sensing experiments were performed using the HC-MDL sensor. A wavelength shift response of 14.21 pm was obtained for 100 ppb dimethyl methylphosphonate (DMMP) gas and that of 14.70 pm was obtained for 1 ppm ethanol gas. These results indicate the possibility of highly sensitive gas detection at ppb levels using HC-MDL. This attractive feature of the HC-MDL sensor is believed to be very useful for a wide variety of optical biochemical sensor applications. © 2017 Optical Society of America.1
Chirality of a resonance in the absence of backscatterings
Chirality of a resonance localized on an islands chain is studied in a deformed Reuleaux triangular-shaped microcavity, where clockwise and counter clockwise traveling rays are classically separated. A resonance localized on a period-5 islands chain exhibits chiral emission due to the asymmetric cavity shape. Chirality is experimentally proved in a InGaAsP multiquantum-well semiconductor laser by showing that the experimental emission characteristics well coincide with the wave dynamical ones. (C) 2017 Optical Society of America1
Effects of 92% oxygen administration on cognitive performance and physiological changes of intellectually and developmentally disabled people
Background: The present study addressed how 92% oxygen administration affects cognitive performance, blood oxygen saturation (SpO(2)), and heart rate (HR) of intellectually and developmentally disabled people. Methods: Seven males (28.9 +/- 1.8 years) and seven females (34.4 +/- 8.3 years) with intellectual and developmental disabilities (disabled level 2.1 +/- 0.5) completed an experiment consisting a 0-back task with normal air (21% oxygen) administered in one run and hyperoxic air (92% oxygen) administered in the other run. The experimental sequence in each run consisted of a 1-min adaptation phase, 2-min control phase, and 2-min 0-back task phase, where SpO(2) and HR were gauged for each phase. Results: The administration of 92% oxygen increased 0-back task performance of intellectually and developmentally disabled people, in association with increased SpO(2) and decreased HR. Our results demonstrate that sufficient oxygen supply subserving cognitive functions, even as a short-term effect, could increase cognitive ability for the intellectually and developmentally disabled people. Conclusions: It is concluded that enriched oxygen can positively affect, at least in the short-term, the working memory of those with intellectual and developmental disabilityopen0
Mucoid Degeneration of Both ACL and PCL
Unlike meniscal tears and chondral defects, the mucoid degeneration of the anterior cruciate ligament (ACL) is a rare cause of knee pain and there have been no case reports of mucoid degeneration of both the ACL and the posterior cruciate ligament (PCL). A 48-year-old-male patient presented with knee pain and limitation of motion. The patient's magnetic resonance imaging, arthroscopic findings, and pathologic diagnosis confirmed a clinical diagnosis of mucoid degeneration of both the ACL and the PCL. The symptoms disappeared after arthroscopic partial excision of the ACL and PCL
Fabrication of a Gd<sub>2</sub>O<sub>3</sub>-Based Film to Shield from Space Radiation inside Aircraft and Its Effectiveness
Aircraft are exposed to cosmic radiation depending on their flight altitude and latitude. Therefore, flight attendants are exposed to radiation for long periods. In this study, a 0.3 mm thick fabric was designed with which to manufacture crew clothes to shield them against external exposure to space radiation, and the shielding performance was analyzed based on empirical experiments in a real environment. Gadolinium oxide, which has a high neutron reaction cross-section, and tungsten, which is useful for gamma-ray shielding, were proposed as the main raw materials for the shielding fabric, and the shielding performance was evaluated using detectors on Arctic flight routes. Composite (KG-01) and single (KG-02) shielding materials were used. In the case of KG-01, the transmission dose rate was 90.7 ± 5.6% compared with the unshielded case, showing an average space-radiation dose reduction of 9.3%. With KG-02, the transmission dose rate was 103.1 ± 2.0% compared with the unshielded case, and the average dose rate increased by 3.1%; therefore, there was no shielding effect against space radiation. Considering the statistical error of the environmental radiation at aircraft flight altitudes, KG-01 had a shielding effect of at least 5%; however, KG-02 yielded no significant shielding effects
Changes in Electroencephalography by Modulation of Interferential Current Stimulation
Interferential current (IFC) stimulation can alter pain perception. This study aimed to investigate the effects of IFC stimulation on motor cortex signals and observe how electroencephalography changes depend on IFC stimulation parameters. Forty-five healthy adults were divided into high frequency (HF)–low intensity (LI), HF–high intensity (HI), and low frequency (LF)–HI groups to compare their electroencephalography before, immediately after, and 30 min after current stimulation. The changes in relative beta power according to the intervention time showed significant differences between the HF–LI and HF–HI, as well as the LF–HI and HF–HI, groups in the C3 and P3 regions immediately after IFC stimulation. Similarly, the gamma band showed significant differences according to the intervention time between the LF–HI and HF–HI groups in the P3 region immediately following IFC intervention. For relative theta power, the interaction between group and time was significantly different in the Fp2, F3, F4, C3, C4, and P4 regions. Based on these results, we were able to map the activation in cerebral cortex regions according to the stimulation level, confirming changes in electroencephalogram activation through peripheral nerve stimulation. This study provides a foundation for future applications for selectively controlling feedback at a proper stimulation level in young adults
Analysis of the Correlation between Shielding Material Blending Characteristics and Porosity for Radiation Shielding Films
The most important factors in the manufacture of shielded sheets are shielding ratio, light weight, and tensile strength. The base material should provide a light-shielding film with strong physical shock resistance, while maintaining the shielding ratio of lead. Therefore, we studied the correlation between the porosity during the mixing process and the maintenance of the shielding film characteristics. Changes in the shielding ratio can be predicted according to the properties of materials such as polymeric silicon and tungsten oxide. Further, their tensile strength and porosity may change depending on the content of the material. Experiments were carried out for each substance based on the shielding ratio with respect to the processing conditions. For a shielding film using barium sulfate (BaSO4) and polymeric silicon, increasing the porosity by the removal of air in the same manufacturing process resulted in a tensile strength of 6.4 MPa at 22% porosity. For tungsten oxide (WO3), the tensile strength was 10.5 MPa at a porosity of 12%, and for a 0.6 mm sample, the shielding performance was very similar to 0.21 mm of Pb. The porosity during the manufacturing process affected the tensile strength and shielding performance, which were significantly different for each shielding material
- …